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Foreword

The INFace (Illumination Normalization techniques for robust Face recognition)

toolbox v 2.0 is a collection of Matlab functions and scripts intended to help

researchers working in the field of face recognition. The toolbox was produced as

a byproduct of my research work and is freely available for download.

The INface toolbox v2.0 includes implementations of the following photomet-

ric normalization techniques: the single-scale-retinex algorithm, the multi-scale-

retinex algorithm, the single-scale self quotient image, the multi-scale self quotient

image, the homomorphic-filtering-based normalization technique, a wavelet-based

normalization technique, a wevelet-denoising-based normalization technique, the

isotropic-diffusion-based normalization technique, the anisotropic-diffusion-based

normalization technique, the non-local-means-based normalization technique, the

adaptive non-local-means-based normalization technique, the DCT-based normal-

ization technique, a normalization technique based on steerable filters, a modified

version of the anisotropic-diffusion-based normalization technique, the Gradient-

faces approach, the Weberfaces approach, the multi-scale Weberfaces approach,

the Tan and Triggs normalization technique and the large and small scale features

normalization technique.

In addition to the listed techniques there are also a number of histogram

manipulation functions included in the toolbox, which can be useful for the task

of illumination invariant face recognition.

This document describes the basics of the toolbox, from installation to usage.

The reader is referred to the original papers for more information on the theory

underlying the individual techniques.
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1. Installing the toolbox

The INface toolbox comes compressed in a ZIP archive or TAR ball. Before you

can use it you first have to uncompress the archive into a folder of your choice.

Once you have done that a new folder named INface tool should appear and

in this folder seven additional directories should be present, namely, auxilary,

histograms, photometric, mex, demos, postprocessors and other. In most of these

folders you should find a Contents.m file with a list and short descriptions of

Matlab functions that should be featured in each of the seven folders.

1.1 Installation using the supplied script

When you are ready to install the toolbox, run Matlab and change your current

working directory to the directory INface tools, or in case you have renamed the

directory, to the directory containing the files of the toolbox. Here, you just type

into Matlabs command prompt:

install INface

The command will trigger the execution of the the corresponding install

script, which basically just adds all directories of the toolbox to Matlabs search

path and compiles the C/C++ code contained in the mex directory. The

installation script will produce so-called MEX (Matlab executable) files, which

can be called from Matlab. The installation script was tested with Matlab

version 7.5.0.342 (R2007b) on a 32-bit WindowsXP (SP3) OS installation as

well as Matlab version 7.11.0.584 (R2010b) on a 64-bit Windows 7 installation.

Version 2.0 of the toolbox ships with precompiled 64-bit MEX files.

Note that the install script was not tested on Linux machines. Nevertheless,

I see no reason why the toolbox should not work on Linux as well. The only

difficulty could be the installation of the toolbox due to potential difficulties with

the path definitions. In case the install script fails (this applies for Linux and

Windows users alike), you can perform the necessary steps manually as described

in the next section.
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1.2 Manual installation

The installation of the toolbox using the provided script can sometimes fail. There

are two possible reasons I can foresee (this does not imply that there can’t be

others as well):

• you have not run the mex setup yet, or

• there is some difficulty with Matlabs search path.

If the installation fails due to the first error, this means that you have not

selected an appropriate compiler for compiling the C/C++ code. To resolve this

issue just type

mex -setup

into Matlabs command prompt and select a compiler from the provided

list. Once this is done you can try to run the install script again. The script

should now successfully compile the C/C++ code.

If the script fails due to path related issues, try adding the path to the tool-

box folder and corresponding subfolders manually. In Matlabs main command

window choose:

File → Set Path → Add with Subfolders.

When a new dialogue window appears navigate to the directory contain-

ing the toolbox, select it and click OK. Choose Save in the Set Path window and

then click Close. This procedure adds the necessary paths to Matlabs search

path. If you have followed all of the above steps, you should have successfully

installed the toolbox and are ready to use it.

If you are attempting to add the toolbox folders and subfolders to Matlabs

search path manually, make sure that you have administrator (or root) privileges,

since these are commonly required for changing the pathdef.m file, where Matlabs

search paths are stored.

1.3 Validating the installation

The INface toolbox v2.0 features a new script not present in the previous ver-

sions of the toolbox, which is aimed at validating the installation process of the
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toolbox. This may come in handy if you encountered errors or warnings during

the automatic installation process or attempted to install the toolbox manually.

The script should be run from the base directory of the toolbox to avoid possible

name clashes.

To execute the validation script type the following command into Matlabs

command window:

check install

The script will test all (or most) techniques contained in the toolbox. This

procedure may take quite some time depending on the speed and processing

power of your machine, so please be patient. If the installation was successful,

you should see a report similar to the one below:

|===========================================================|

VALIDATION REPORT:

Function ‘‘adjust range’’ is working properly.

Function ‘‘gamma correction’’ is working properly.

Function ‘‘threshold filtering’’ is working properly.

Function ‘‘normalize8’’ is working properly.

Function ‘‘fitt distribution’’ is working properly.

Function ‘‘rank normalization’’ is working properly.

Function ‘‘histtruncate’’ is working properly.

Function ‘‘robust postprocessor’’ is working properly.

Function ‘‘dog’’ is working properly.

Function ‘‘single scale retinex’’ is working properly.

Function ‘‘tantriggs’’ is working properly.

Function ‘‘weberfaces’’ is working properly.

Function ‘‘multi scale weberfaces’’ is working properly.

Function ‘‘gradientfaces’’ is working properly.

Function ‘‘anisotropic smoothing stable’’ is working properly.

Function ‘‘DCT normalization’’ is working properly.

Function ‘‘lssf norm’’ is working properly.

Function ‘‘adaptive nl means normalization’’ is working properly.

Function ‘‘adaptive single scale retinex’’ is working properly.

Function ‘‘anisotropic smoothing’’ is working properly.

Function ‘‘isotropic smoothing’’ is working properly.

Function ‘‘multi scale retinex’’ is working properly.
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Function ‘‘single scale self quotient image’’ is working properly.

Function ‘‘multi scale self quotient image’’ is working properly.

Function "nl means normalization’’ is working properly.

Function ‘‘steerable gaussians’’ is working properly.

Function ‘‘wavelet denoising’’ is working properly.

Function ‘‘wavelet normalization’’ is working properly.

Function ‘‘homomorphic’’ is working properly.

|===========================================================|

SUMMARY:

All functions from the toolbox are working ok.

|===========================================================|

In case the installation has (partially) failed, the report will explicitly show,

which functions are not working properly. In most cases the toolbox should

work just fine. Problems may occur only as a consequence of the C/C++ code

compiling process.

Note that the check install script was not initially meant to be an install

validation script. The script was written to test whether all functions from the

toolbox work correctly (i.e., with different combinations of input arguments).

Basically, it was used for debugging the toolbox. However, due to the fact that

the script tests all (or most) functions from the toolbox, it can equally well serve

as an installation validation script.



2. Acknowledging the Toolbox

Any paper or work published as a result of research conducted by using the code

in the toolbox or any part of it must include the following two publications in

the reference section:

V. Štruc and N Pavešić, ”Photometric normalization techniques for illumination invari-
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V. Štruc and N. Pavešić, ”Gabor-Based Kernel Partial-Least-Squares Discrimination
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BibTex files for the above publications are contained in the other folder

and are stored as ’ACKNOWL1.bib’ and ’ACKNOWL2.bib’, respectively.
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3. Toolbox description

The functions and scripts contained in the toolbox were produced as a byproduct

of my research work. I have added a header to each of the files containing some

examples of the usage of the functions and a basic description of the functions

functionality. However, I made no effort in optimizing the code in terms of speed

and efficiency. I am aware that some of the implementations could be significantly

speeded up, but unfortunately I have not yet found the time to do so. I am sharing

the code contained in the toolbox to make life easier for researcher working in the

field of face recognition and students starting to get familiar with face recognition

and its challenges. My main motivation for producing this toolbox was the fact

that after quite some googling I have had no luck in finding any source code

for illumination invariant face recognition, or better said, I have had no luck in

finding source code where (in opinion) the implementation of the illumination

normalization technique was correct.

The INFace (Illumination Normalization techniques for robust Face recog-

nition) toolbox in its current form is a collection of functions which perform

illumination normalization and, hence, tackle one of the greatest challenges in

face recognition. It should be noted that most of the techniques in this toolbox

are implementations of so-called photometric normalization techniques. With

the term photometric normalization technique we denote any normalization tech-

nique which performs illumination normalization at the preprocessing level (as

opposed to techniques compensating for illumination induced appearance changes

at the modeling or classification level). In case the reader is looking for imple-

mentations of model based approaches (such as the illumination cone models or

spherical harmonics) this toolbox is not the right place to look for.

All techniques in the toolbox are implemented for use with grey-scale images

and were tested on images of size 128 × 128 pixels. The default parameters of

the techniques were chosen in such a way that good normalization results were

obtained on images of this size, i.e., 128 × 128 pixels. Of course the term good

is relative. The techniques can also be used with color images; however, in this

case the reader is encouraged to write his own script to process the color images,

e.g., component-wise.

7
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The toolbox contains seven folders, named, auxilary, histograms, photometric,

postprocessors, mex, demos and other. In the remainder of this chapter we will

focus on the description of the contents of each of these folders.

3.1 The photometric folder

The folder named photometric is the main folder of the toolbox and contains the

implementations of 21 different photometric normalization techniques proposed

in the literature, i.e.:

• the single scale retinex algorithm (v2.0),

• the multi scale retinex algorithm (v2.0),

• the adaptive single scale retinex algorithm (v2.0),

• the homomorphic filtering based normalization technique (v2.0),

• the single scale self quotient image (v2.0),

• the multi scale self quotient image (v2.0),

• the DCT based normalization technique (v2.0),

• the wavelet based normalization technique (v2.0),

• the wavelet-denoising based normalization technique (v2.0),

• the isotropic diffusion based normalization technique (v2.0),

• the anisotropic diffusion based normalization technique (v2.0),

• the steerable filter based normalization technique (v2.0),

• the non-local means based normalization technique (v2.0),

• the adaptive non-local means based normalization technique (v2.0),

• the modified anisotropic diffusion based normalization technique (v2.0),

• the Gradientfaces based normalization technique (v2.0),

• the single scale Weberfaces normalization technique (v2.0),

• the multi scale Weberfaces normalization technique (v2.0),
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• the large and small scale features based normalization technique (v2.0),

• the Tan and Triggs normalization technique (v2.0), and

• the DoG filtering based normalization technique (v2.0).

A basic description of the functionality of the function implementing the tech-

niques in the toolbox together with a few examples is given below.

3.1.1 The single scale retinex algorithm

The single scale retinex (SSR) algorithm was proposed by Jobson et al. in

[7]. Like the majority of photometric normalization techniques it is based on

the so-called retinex theory which is explained in [8] in more detail. The SSR

technique is implemented in the toolbox with a function that has the following

prototype:

[R,L] = single scale retinex(X,hsiz, normalize).

Here, X denotes the grey-scale image and hsiz stands for the parameter

that controls the bandwidth of the Gaussian filter needed for the SSR technique.

In the original paper by Jobson et al., the parameter hsiz is denoted as c. The

input argument normalize∈ {1, 0} stands for a parameter controlling whether

a postprocessing procedure is applied to the normalized image or not. The

function returns the “illumination invariant” reflectance R and the estimated

luminance function L (both in the log domain). Note here that the luminance

function is returned only for visualization purposes, as it is usually only of little

value from the perspective of illumination invariant face recognition.

If you type

help single scale retinex

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

[R,L]=single scale retinex(X);

figure,imshow(X,[]);

figure,imshow(R,[]);
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figure,imshow(L,[]);

The code reads the image named sample image.bmp into the variable X

and applies the SSR algorithm with default parameter values to the image. After

the procedure, all three images, i.e., the original image, the illumination invariant

reflectance and the estimated luminance, are displayed in three separate figures.

We have applied the SSR technique to several images from the YaleB database.

The results of the processing are shown in Fig. 3.1.

Figure 3.1: Sample images processed with the example code: original images (up-

per row), SSR processed images - the reflectance functions (lower row)

3.1.2 The multi scale retinex algorithm

The multi scale retinex (MSR) algorithm is an extension of the single scale

retinex algorithm again proposed by Jobson et al. [6]. The MSR technique is

implemented in the toolbox with a function that has the following prototype:

Y = multi scale retinex(X,hsiz,normalize).

Here, X denotes the grey-scale image and hsiz stands for a vector of pa-

rameters that control the bandwidth of the Gaussian filters needed for the MSR

technique. In the original paper by Jobson et al., the parameters in hsiz are

denoted as c. The input argument normalize∈ {1, 0} stands for a parameter

controlling whether a postprocessing procedure is applied to the normalized

image or not.

If you type

help multi scale retinex
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you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y=multi scale retinex(X,[7 15 21]);

figure,imshow(X);

figure,imshow(Y,[]);

The code reads the image named sample image.bmp into the variable X

and applies the MSR algorithm with three filter scales (defined by the values in

hsiz) to the image. After the procedure, both images, i.e., the original one and

the processed one, are displayed in two separate figures.

We have applied the code to several images from the YaleB database. The

results of the processing are shown in Fig. 3.2.

Figure 3.2: Sample images processed with the example code: original images (up-

per row), MSR processed images (lower row)

3.1.3 The adaptive single scale retinex algorithm

The adaptive single scale retinex (ASR) algorithm is one the newest additions

to the retinex techniques and was proposed by Park et al. in [9]. The ASR

technique is implemented in the toolbox with a function that has the following

prototype:

[R,L] = adaptive single scale retinex(X,T,S,h,normalize).

Here, X denotes the input grey-scale image to be processed, T stands for

the number of iterations performed during the processing, and S and h represent

parameters needed by the technique. The input argument normalize∈ {1, 0}
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stands for a parameter controlling whether a postprocessing procedure is applied

to the normalized image or not. The reader is referred to the original paper for

more information on the parameters [9]. The function returns the “illumination

invariant” reflectance R and the estimated luminance function L (both in the log

domain). Note here that the luminance function is returned only for visualization

purposes, as it is usually only of little value from the perspective of illumination

invariant face recognition.

If you type

help adaptive single scale retinex

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

[R,L] = adaptive single scale retinex(X,15);

figure,imshow(X);

figure,imshow(R,[]);

figure,imshow(L,[]);

The code reads the image named sample image.bmp into the variable X

and applies the ASR algorithm with 15 iterations to the image. The parameters

S and h are determined automatically as suggested by the authors of the

technique, but could also be set arbitrary. After the execution of the code, all

three images, i.e., the original image, the illumination invariant version (i.e.,

the reflectance) and the estimated luminance function, are displayed in three

separate figures.

We have applied the above code to several images from the YaleB database.

The results of the processing are shown in Fig. 3.3.

3.1.4 The homomorphic filtering based normalization technique

Homomorphic filtering (HOMO) is a well known normalization technique where

the input image is first transformed into the logarithm and then into the

frequency domain. Here, the high frequency components are emphasized and the

low-frequency components are reduced. As a final step the image is transformed

back into the spatial domain by applying the inverse Fourier transform and
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Figure 3.3: Sample images processed with the example code: original images (up-

per row), ASR processed images - the reflectance functions (lower row)

taking the exponential of the result. A more detailed description of the technique

can be found, for example, in [5]. The HOMO technique is implemented in the

toolbox with a function that has the following prototype:

Y=homomorphic(X,boost,CutOff,order,lhistogram cut,uhistogram cut).

Here, X denotes the input grey-scale image to be processed, boost stands

for the boosting factor of the high frequency components with respect to the

low frequency components, CutOff denotes the cut-off frequency of the filter (0

- 0.5), order denotes the order of the modified Butterworth style filter that is

used, and lhistogram cut and uhistogram cut stand for parameters passed

to the histtruncate function and control the post-processing procedure of the

homomorphic filtering based normalization technique. If you type

help homomorphic

you will get additional information on the function together with several

examples of usage.

I would like to add at this point that this function is the work of Dr. Peter

Kovesi and would again like to thank him for giving me permission to include it

into the INface toolbox.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y = Y=normalize8(homomorphic(X,2, .25, 2));

figure,imshow(X);

figure,imshow(uint8(Y));

The code reads the image named sample image.bmp into the variable X
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and applies the HOMO technique with the following parameters to the image:

boost=2, CutOff=0.25 and order=2. After the execution of the code, both

images, i.e., the original one and the processed one, are displayed in two separate

figures.

We have applied the above code to several images from the YaleB database.

The results of the processing are shown in Fig. 3.3.

Figure 3.4: Sample images processed with the example code: original images (up-

per row), HOMO processed images (lower row)

3.1.5 The single scale self quotient image

The single scale self quotient image (SSQ) was introduced to the field of face

recognition by Wang et al. in [14]. The technique exhibits similarities to the

single scale retinex technique, but unlike the SSR technique uses an anisotropic

filter for the smoothing operation. The SSQ technique is implemented in the

toolbox with a function that has the following prototype:

[R,L]=single scale self quotient image(X,siz,sigma,normalize);.

Here, X denotes the input grey-scale image to be processed, siz stands for

the size of the Gaussian smoothing filter, and sigma controls the bandwidth

of the filter. The input argument normalize∈ {1, 0} stands for a parameter

controlling whether a postprocessing procedure is applied to the normalized

image or not. The function returns the “illumination invariant” reflectance R

and the estimated luminance function L. Note here that the luminance function

is returned only for visualization purposes, as it is usually only of little value

from the perspective of illumination invariant face recognition.

The reader is referred to the original paper for more information on the

technique [14]. If you type
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help single scale self quotient image

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

[R,L]=single scale self quotient image(X,7,1);

figure,imshow(X);

figure,imshow(R,[]);

figure,imshow(L,[]);

The code reads the image named sample image.bmp into the variable X

and applies the SSQ algorithm with a Gaussian filter of size 7 × 7 and σ = 1 to

the image in X. After the execution of the code, all three images, i.e., the original

image, the illumination invariant version (i.e., the reflectance) and the estimated

luminance function, are displayed in three separate figures.

We have applied the above code to several images from the YaleB database.

The results of the processing are shown in Fig. 3.5.

Figure 3.5: Sample images processed with the example code: original images (up-

per row), SSQ processed images - the reflectance functions (lower row)

3.1.6 The multi scale self quotient image

Like the SSQ technique, the multi scale self quotient image (MSQ) was also

introduced to the field of face recognition by Wang et al. in [14]. The technique

exhibits similarities to the multi scale retinex technique, but unlike the MSR

technique uses an anisotropic filter for the smoothing operation. The MSQ

technique is implemented in the toolbox with a function that has the following

prototype:
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Y=multi scale self quotient image(X,siz,sigma,normalize);.

Here, X denotes the input grey-scale image to be processed, siz stands for

a vector of sizes of the Gaussian smoothing filters, and sigma is a vector of same

size as siz whose values control the bandwidth of the individual filters. The

input argument normalize∈ {1, 0} stands for a parameter controlling whether a

postprocessing procedure is applied to the normalized image or not. The reader

is referred to the original paper for more information on the technique [14]. If

you type

help multi scale self quotient image

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y=multi scale self quotient image(X,[3 5 11 15],[1 1.1 1.2 1.3]);

figure,imshow(X);

figure,imshow(Y,[]);

The code reads the image named sample image.bmp into the variable X

and applies the MSQ algorithm with Gaussian filter of four scales (defined in [3

5 11 15]) and four different bandwidths (defined in [1 1.1 1.2 1.3]) to the

image in X. After the execution of the code, both images, i.e., the original one

and the processed one, are displayed in two separate figures.

We have applied the above code to several images from the YaleB database.

The results of the processing are shown in Fig. 3.6.

3.1.7 The DCT based normalization technique

The DCT based normalization technique (DCT) was proposed by Chen et

al. in [2]. The technique sets a number of DCT coefficients corresponding to

low-frequencies to zero and hence tries to achieve illumination invariance. The

DCT technique is implemented in the toolbox with a function that has the

following prototype:
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Figure 3.6: Sample images processed with the example code: original images (up-

per row), MSQ processed images (lower row)

Y=DCT normalization(X,numb,normalize);.

Here, X denotes the input grey-scale image to be processed and numb stands for

the number of DCT coefficients to set to zero - the coefficients are scanned in a

zig-zag manner. The input argument normalize∈ {1, 0} stands for a parameter

controlling whether a postprocessing procedure is applied to the normalized

image or not. The reader is referred to the original paper for more information

on the technique [2]. If you type

help DCT normalization

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y=DCT normalization(X,20);

figure,imshow(X);

figure,imshow(Y,[]);

The code reads the image named sample image.bmp into the variable X

and applies the DCT normalization technique to the image in X. It sets 20

coefficients to zero. After the execution of the code, both images, i.e., the

original one and the processed one, are displayed in two separate figures.

We have applied the above code to several images from the YaleB database.

The results of the processing are shown in Fig. 3.7.
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Figure 3.7: Sample images processed with the example code: original images (up-

per row), DCT processed images (lower row)

3.1.8 The wavelet based normalization technique

The wavelet based normalization technique (WA) was proposed by Du and Ward

in [3]. The technique applies the discrete wavelet transform to an image and

then processes the obtained sub-bands. It emphasizes the matrices of detailed

coefficient and applies histogram equalization to the approximate coefficients of

the transform. After the manipulation of the individual sub-band the normalized

image is reconstructed using the inverse wavelet transform. The WA technique

is implemented in the toolbox with a function that has the following prototype:

Y=wavelet normalization(X,fak,wname,mode,normalize);.

Here, X denotes the input grey-scale image to be processed, fak stands for

the factor by which the detailed coefficients are scaled, wname stands for the

wavelet name that is used for the discrete wavelet transform and mode denotes

a string determining the extension mode of the discrete wavelet transform. The

input argument normalize∈ {1, 0} stands for a parameter controlling whether

a postprocessing procedure is applied to the normalized image or not. For help

on the parameter ”mode“ please type ”help dwtmode” into Matlabs command

prompt. The reader is referred to the original paper for more information on the

technique [3]. If you type

help wavelet normalization

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y=wavelet normalization(X,1.4,’db1’);
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figure,imshow(X);

figure,imshow(Y,[]);

The code reads the image named sample image.bmp into the variable X

and applies the WA normalization technique to the image in X. Here, it uses a

factor of 1.4 to boost the detailed coefficients and employs Daubechies wavelets

for the discrete wavelet transform. After the execution of the code, both images,

i.e., the original one and the processed one, are displayed in two separate figures.

We have applied the above code to several images from the YaleB database.

The results of the processing are shown in Fig. 3.8.

Figure 3.8: Sample images processed with the example code: original images

(left), WA processed images (right)

3.1.9 The wavelet denoising based normalization technique

The wavelet denoising based normalization technique (WD) was proposed by

Zhang et al. [16]. The technique applies wavelet denoising to an image to obtain

an estimate of the luminance and consequently to compute the reflectance.

The WD technique is implemented in the toolbox with a function that has the

following prototype:

[R,L]=wavelet denoising(X,wname,level, normalize);.

Here, X denotes the input grey-scale image to be processed, wname stands

for the wavelet name that is used for the discrete wavelet transform and level

denotes a scalar value controlling the level of the decomposition. The input

argument normalize∈ {1, 0} stands for a parameter controlling whether a

postprocessing procedure is applied to the normalized image or not. The reader

is referred to the original paper for more information on the technique [16]. The

function returns the “illumination invariant” reflectance R and the estimated
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luminance function L (both in the log domain). Note here that the luminance

function is returned only for visualization purposes, as it is usually only of little

value from the perspective of illumination invariant face recognition.

If you type

help wavelet denoising

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

[R,L]=wavelet denoising(X,’haar’);

figure,imshow(X);

figure,imshow(R,[]);

figure,imshow(L,[]);

The code reads the image named sample image.bmp into the variable X

and applies the WD normalization technique to the image in X using Haar

wavelets and a default value of the decomposition level of 2. After the execution

of the code, all three images, i.e., the original one, the processed one (the

reflectance) and the estimated luminance, are displayed in three separate figures.

We have applied the above code to several images from the YaleB database.

The results of the processing are shown in Fig. 3.9.

Figure 3.9: Sample images processed with the example code: original images (up-

per row), WD processed images (lower row) - the reflectance functions
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3.1.10 The isotropic diffusion based normalization technique

The isotropic diffusion based normalization technique (IS) uses isotropic smooth-

ing of the image to estimate the luminance function. It represents a simpler

variant of the anisotropic diffusion based normalization technique proposed by

Gross and Brajovic in [4]. A more detailed description of the technique can be

found in [5]. The IS technique is implemented in the toolbox with a function

that has the following prototype:

[R,L] = isotropic smoothing(X,param,normalize);.

Here, X denotes the input grey-scale image to be processed and param

stands for a scalar value controlling the relative importance of the smoothness

constraint. In the papers on diffusion processes this parameter is usually denoted

as λ. The input argument normalize∈ {1, 0} stands for a parameter controlling

whether a postprocessing procedure is applied to the normalized image or

not. The reader is referred to [5] for more information on the technique. The

function returns the “illumination invariant” reflectance R and the estimated

luminance function L. Note here that the luminance function is returned only for

visualization purposes, as it is usually only of little value from the perspective of

illumination invariant face recognition.

If you type

help isotropic smoothing

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y = isotropic smoothing(X);

figure,imshow(X);

figure,imshow(Y,[]);

The code reads the image named sample image.bmp into the variable X

and applies the IS normalization technique to the image in X using the default

value of λ = 7. After the execution of the code, both images, i.e., the original

one and the processed one, are displayed in two separate figures.

We have applied the above code to several images from the YaleB database.
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The results of the processing are shown in Fig. 3.10.

Figure 3.10: Sample images processed with the example code: original images (up-

per row), IS processed images (lower row) - the reflectance functions

3.1.11 The anisotropic diffusion based normalization technique

The anisotropic diffusion based normalization technique (AS) uses anisotropic

smoothing of the image to estimate the luminance function. It was introduced

to the field of face recognition by Gross and Brajovic in [4]. The AS technique

is implemented in the toolbox with a function that has the following prototype:

[R,L] = anisotropic smoothing(X,param,normalize);.

Here, X denotes the input grey-scale image to be processed and param

stands for a scalar value controlling the relative importance of the smoothness

constraint. In the papers on diffusion processes this parameter is usually denoted

as λ. The input argument normalize∈ {1, 0} stands for a parameter controlling

whether a postprocessing procedure is applied to the normalized image or not.

The reader is referred to [5] and [4] for more information on the technique. The

function returns the “illumination invariant” reflectance R and the estimated

luminance function L. Note here that the luminance function is returned only for

visualization purposes, as it is usually only of little value from the perspective of

illumination invariant face recognition.

If you type

help anisotropic smoothing

you will get additional information on the function together with several

examples of usage.
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An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y = anisotropic smoothing(X);

figure,imshow(X);

figure,imshow(Y,[]);

The code reads the image named sample image.bmp into the variable X

and applies the AS normalization technique to the image in X using the default

value of λ = 7. After the execution of the code, both images, i.e., the original

one and the processed one, are displayed in two separate figures.

We have applied the above code to several images from the YaleB database.

The results of the processing are shown in Fig. 3.11.

Figure 3.11: Sample images processed with the example code: original images (up-

per row), AS processed images (lower row) - the reflectance functions

3.1.12 The steerable filter based normalization technique

The steerable filter based normalization technique (SF) uses steerable filters for

removing illumination induced appearance variations from the facial images.

The SF technique is implemented in the toolbox with a function that has the

following prototype:

[Y] = steerable gaussians(X1,sigmas,angles, normalize);.

Here, X denotes the input grey-scale image to be processed, sigmas stands

for parameter vector determining the number and bandwidths of the steerable

filters and angles is a scalar value defining the angular resolution of the filter

bank. The input argument normalize∈ {1, 0} stands for a parameter controlling

whether a postprocessing procedure is applied to the normalized image or not.
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If you type

help steerable gaussians

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y = steerable gaussians(X,[0.5,1],6);

figure,imshow(X);

figure,imshow(uint8(Y),[]);

The code reads the image named sample image.bmp into the variable X

and applies the SF normalization technique to the image in X using two filter

scales with the filters at the first scale having σ = 0.5 and the filters at the

second scale having σ = 1. On both scales there is a total of 6 filter orientations

taken uniformly from the interval [0, π]. After the execution of the code, both

images, i.e., the original one and the processed one, are displayed in two separate

figures.

We have applied the above code to sample images from the YaleB database.

The results of the processing are shown in Fig. 3.12.

Figure 3.12: Sample images processed with the example code: original imagse (up-

per row), SF processed images (lower row)

3.1.13 The non-local means based normalization technique

The non-local means based normalization technique (NLM) was proposed by

Štruc and Pavešič in [11]. The technique uses the non-local means denoising

algorithm to compute the luminance function and consequently to estimate the
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reflectance. The NLM technique is implemented in the toolbox with a function

that has the following prototype:

[R,L] = nl means normalization(X,h,N,normalize);.

Here, X denotes the input grey-scale image to be processed, h stands for

the parameter controlling the decay of the exponential function used by the

technique, and N defines the size of the image patches needed. The input

argument normalize∈ {1, 0} stands for a parameter controlling whether a

postprocessing procedure is applied to the normalized image or not. The reader

is referred to [1] for a detailed description of the non-local means algorithm and

[11] for more information on the NLM normalization technique. The function

returns the “illumination invariant” reflectance R and the estimated luminance

function L (both in the log domain). Note here that the luminance function is

returned only for visualization purposes, as it is usually only of little value from

the perspective of illumination invariant face recognition.

If you type

help nl means normalization

you will get additional information on the function together with several

examples of usage.

I would like to add at this point that this function is based on the non-local

means toolbox by Dr. Gabriel Peyré. I would like to thank him for giving me

permission to include it into the INface toolbox.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y = nl means normalization(X);

figure,imshow(X);

figure,imshow(uint8(Y),[]);

The code reads the image named sample image.bmp into the variable X

and applies the NLM normalization technique to the image in X using the default

values of the technique. After the execution of the code, both images, i.e., the

original one and the processed one, are displayed in two separate figures.

We have applied the above code to sample images from the YaleB database.

The results of the processing are shown in Fig. 3.13.



26 Toolbox description

Figure 3.13: Sample images processed with the example code: original images (up-

per row), NLM processed images (lower row) - the reflectance functions

3.1.14 The adaptive non-local means based normalization technique

The adaptive non-local means based normalization technique (ANL) was pro-

posed by Štruc and Pavešič in [11]. The technique uses the adaptive non-local

means denoising algorithm to compute the luminance function and consequently

to estimate the reflectance. Here, the adaptiveness of the smoothing is a

controlled by the images local contrast. The ANL technique is implemented in

the toolbox with a function that has the following prototype:

[R,L] = adaptive nl means normalization(X,h,N,normalize);.

Here, X denotes the input grey-scale image to be processed, h stands for

the parameter controlling the decay of the exponential function (it actually

controls the maximum value of the parameter that is linked to the local con-

trast), and N defines the size of the image patches needed. The input argument

normalize∈ {1, 0} stands for a parameter controlling whether a postprocessing

procedure is applied to the normalized image or not. The reader is referred to

[11] for more information on the ANL normalization technique. The function

returns the “illumination invariant” reflectance R and the estimated luminance

function L (both in the log domain). Note here that the luminance function is

returned only for visualization purposes, as it is usually only of little value from

the perspective of illumination invariant face recognition.

If you type

help adaptive nl means normalization

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:
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X=imread(’sample image.bmp’);

Y = adaptive nl means normalization(X);

figure,imshow(X);

figure,imshow(uint8(Y),[]);

The code reads the image named sample image.bmp into the variable X

and applies the ANL normalization technique to the image in X using the default

values of the technique. After the execution of the code, both images, i.e., the

original one and the processed one, are displayed in two separate figures.

We have applied the above code to sample images from the YaleB database.

The results of the processing are shown in Fig. 3.14.

Figure 3.14: Sample images processed with the example code: original images (up-

per row), ANL processed images (lower row) - the reflectance functions

3.1.15 The modified anisotropic diffusion normalization technique

The modified anisotropic diffusion normalization technique (MAS) represents a

modified version of the anisotropic diffusion normalization technique proposed by

Gros and Brajovic in [4]. Two modification were introduced into the technique

when compared to the original approach: (i) the estimate of the local contrast

was made more robust by introducing an additional atan function. This has

the effect of saturating the extreme values that are introduced to the contrast

estimate due pixel intensities near 0 in the original face images. (ii) a robust

postprocessing procedure (proposed in the Tan and Triggs paper) was applied

in the final stage of the technique. The MAS technique is implemented in the

toolbox with a function that has the following prototype:

[R,L] = anisotropic smoothing stable(X,param,normalize);.

Here, X denotes the input grey-scale image to be processed and param
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stands for a scalar value controlling the relative importance of the smoothness

constraint. In the papers on diffusion processes this parameter is usually denoted

as λ. The input argument normalize∈ {1, 0} stands for a parameter controlling

whether the robust postprocessing procedure is applied to the normalized image

or not. The function returns the “illumination invariant” reflectance R and

the estimated luminance function L. Note here that the luminance function is

returned only for visualization purposes, as it is usually only of little value from

the perspective of illumination invariant face recognition.

If you type

help anisotropic smoothing stable

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

[R,L] = anisotropic smoothing stable(X);

figure,imshow(X);

figure,imshow(normalize8(R),[]);

figure,imshow(normalize8(L),[]);

The code reads the image named sample image.bmp into the variable X

and applies the MAS normalization technique to the image in X using the default

value of λ = 7. After the execution of the code, all three images, i.e., the

original one, the processed one (the reflectance), and the estimated luminance

are displayed in three separate figures.

We have applied the above code to several images from the YaleB database.

The results of the processing are shown in Fig. 3.15.

3.1.16 The Gradientfaces normalization technique

The Gradientfaces-based normalization technique (GRF) represents a normaliza-

tion technique first proposed in [17]. The function computes the orientation of

the image gradients in each pixel of the face images and uses the computed face

representation as an illumination invariant version of the input image. The GRF

technique is implemented in the toolbox with a function that has the following

prototype:
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Figure 3.15: Sample images processed with the example code: original images (up-

per row), MAS processed images (lower row) - the reflectance functions

Y = gradientfaces(X,sigma, normalize);.

Here, X denotes the input grey-scale image to be processed and sigma

stands for the standard deviation of the Gaussian derivative filters used for

estimating the image gradient. The input argument normalize∈ {1, 0} stands

for a parameter controlling whether a postprocessing procedure is applied to the

normalized image or not. The reader is referred to [17] for more information on

the GRF normalization technique.

If you type

help gradientfaces

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y = gradientfaces(X);

figure,imshow(X);

figure,imshow(normalize8(Y),[]);

The code reads the image named sample image.bmp into the variable X

and applies the GRF normalization technique to the image in X using the default

value of sigma=0.75. After the execution of the code, both, i.e., the original one

and the processed one, are displayed in two separate figures.

We have applied the above code to several images from the YaleB database.

The results of the processing are shown in Fig. 3.16.
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Figure 3.16: Sample images processed with the example code: original images (up-

per row), GRF processed images (lower row)

3.1.17 The single scale Weberfaces normalization technique

The single scale Weberfaces normalization technique (WEB) represents a nor-

malization technique first proposed in [13]. The function computes the relative

gradient in the form of a modified Weber contrast and uses the computed face

representation as an illumination invariant version of the input image. The WEB

technique is implemented in the toolbox with a function that has the following

prototype:

Y = weberfaces(X,sigma, nn, alfa, normalize);.

Here, X denotes the input grey-scale image to be processed, sigma stands

for the standard deviation of the Gaussian filter that is applied in the first step

of the technique, nn denotes the size of the local neighborhood over which the

contrast (or to use the notaion of the authors the relative gradient) is computed,

e.g., 9, 25, ..., (2n + 1)2;n ∈ N+, alfa is the magnification parameter used

for balancing the input range of the atan function and normalize ∈ {1, 0}

is the parameter that controls whether the input result is scaled to the 8-bit

interval or not. The reader is referred to [13] for more information on the WEB

normalization technique.

If you type

help weberfaces

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y = weberfaces(X);
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figure,imshow(X);

figure,imshow(normalize8(Y),[]);

The code reads the image named sample image.bmp into the variable X

and applies the WEB normalization technique to the image in X using the

default values of sigma=0.75, nn = 9, alfa = 2, and normalize = 1. After

the execution of the code, both, i.e., the original one and the processed one, are

displayed in two separate figures.

We have applied the above code to several images from the YaleB database.

The results of the processing are shown in Fig. 3.17.

Figure 3.17: Sample images processed with the example code: original images (up-

per row), WEB processed images (lower row)

3.1.18 The multi scale Weberfaces normalization technique

The multi scale Weberfaces normalization technique (MSW) is a straight forward

extension of the single scale Weberfaces approach proposed in [13]. The function

computes the relative gradient in the form of a modified Weber contrast for

different neighborhood sizes and uses a linear combination of the computed face

representations as an illumination invariant version of the input image. The

MSW technique is implemented in the toolbox with a function that has the

following prototype:

Y = multi scale weberfaces(X,sigma, nn, alfa, weights, normalize);.

Here, X denotes the input grey-scale image to be processed, sigma stands

for a vector of standard deviations of the Gaussian filters that are applied

in the first step of the technique, nn denotes a vector of sizes of the local

neighborhoods over which the contrasts (or to use the notaion of the authors the

relative gradients) are computed, e.g., [3 5 7], alfa is a vector of magnification
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parameters used for balancing the input range of the atan function, weights is

a vector of weight used for combining the individual Weberfaces and normalize

∈ {1, 0} is the parameter that controls whether the input result is scaled to

the 8-bit interval or not. Note that all input vectors (i.e., sigma, nn, alfa,

weights) need to have the same number of elements.

If you type

help multi scale weberfaces

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y = multi scale weberfaces(X);

figure,imshow(X);

figure,imshow(normalize8(Y),[]);

The code reads the image named sample image.bmp into the variable X

and applies the MSW normalization technique to the image in X using the

default values of sigma=[1 0.75 0.5], nn = [9 25 49], alfa = [2 0.2

0.02], weights = [1 1 1] and normalize = 1. After the execution of the

code, both, i.e., the original one and the processed one, are displayed in two

separate figures.

We have applied the above code to several images from the YaleB database.

The results of the processing are shown in Fig. 3.18.

Figure 3.18: Sample images processed with the example code: original images (up-

per row), MSW processed images (lower row)
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3.1.19 The large- and small-scale features normalization technique

The large- and small-scale features normalization technique (LSSF) is a nor-

malization technique first proposed in [15]. The technique normalizes the input

image by first computing the reflectance and luminance functions of the image

and then further processing both computed functions using a second round

of normalization. The technique implemented in the toolbox uses the SSR

technique in both steps, but does not implement the non-point light technique

which requires training data, since this would limit the applicability of the

technique to frontal images. The SSR technique is implemented in the toolbox

with a function that has the following prototype:

Y = lssf norm(X, normalize);.

Here, X denotes the input grey-scale image to be processed and normalize

∈ {1, 0} is the parameter that controls whether the input result is scaled to the

8-bit interval or not. The reader is referred to [15] for more information on the

LSSF normalization technique.

If you type

help lssf norm

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y = lssf norm(X);

figure,imshow(X);

figure,imshow(normalize8(Y),[]);

The code reads the image named sample image.bmp into the variable X

and applies the LSSF normalization technique to the image in X using the default

value normalize = 1 After the execution of the code, both, i.e., the original one

and the processed one, are displayed in two separate figures.

We have applied the above code to several images from the YaleB database.

The results of the processing are shown in Fig. 3.19.
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Figure 3.19: Sample images processed with the example code: original images (up-

per row), LSSF processed images (lower row)

3.1.20 The Tan and Triggs normalization technique

The Tan and Triggs normalization technique (TT) as the name suggests is a

normalization technique first proposed by Tan and Triggs in [10]. The technique

normalizes the input image through the use of a processing chain that first

applies gamma correction to the input image, then subjects the corrected image

to DoG filtering and finally employs a robust post-processor to produce the final

result. The TT technique is implemented in the toolbox with a function that

has the following prototype:

Y = tantriggs(X,gamma, normalize);.

Here, X denotes the input grey-scale image to be processed, gamma stands

for the gamma parameter of the gamma correction and normalize ∈ {1, 0}

is the parameter that controls whether the input result is scaled to the 8-bit

interval or not. The reader is referred to [10] for more information on the TT

normalization technique.

If you type

help lssf norm

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y = tantriggs(X);

figure,imshow(X);

figure,imshow(normalize8(Y),[]);
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The code reads the image named sample image.bmp into the variable X

and applies the TT normalization technique to the image in X using the default

values gamma = 0.2 and normalize = 1. After the execution of the code, both,

i.e., the original one and the processed one, are displayed in two separate figures.

We have applied the above code to several images from the YaleB database.

The results of the processing are shown in Fig. 3.20.

Figure 3.20: Sample images processed with the example code: original images (up-

per row), TT processed images (lower row)

3.1.21 The DoG filtering-based normalization technique

The DoG filtering-based normalization technique (DOG) is a normalization

technique which relies on the difference of Gaussians filter to produce the

normalized image. Basically it applies a bandpass filter to the input image and

produces a normalized version of it. Note that before you use the filter you have

to apply gamma correction or the log transform to the image or the result will

not be what you were hoping for. The DOG technique is implemented in the

toolbox with a function that has the following prototype:

Y = dog(X,sigma1, sigma2, normalize);.

Here, X denotes the input grey-scale image to be processed, sigma1 stands

for the standard deviation of the high-pass Gaussian filter, sigma2 stands for

the standard deviation of the low-pass Gaussian filter and normalize ∈ {1, 0} is

the parameter that controls whether the input result is postprocessed or not.

If you type

help dog

you will get additional information on the function together with several
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examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y = dog(log(X+1));

figure,imshow(X);

figure,imshow(normalize8(Y),[]);

The code reads the image named sample image.bmp into the variable X

and applies the DOG normalization technique to the image in X using the default

values sigma1 = 1, sigma2=2 and normalize = 1. After the execution of the

code, both, i.e., the original one and the processed one, are displayed in two

separate figures.

We have applied the above code to several images from the YaleB database.

The results of the processing are shown in Fig. 3.21.

Figure 3.21: Sample images processed with the example code: original images (up-

per row), DOG processed images (lower row)

3.2 The postprocessors folder

The folder named postprocessors contains the implementations of two postpro-

cessing techniques. Specifically, it contains the following functions:

• histtruncate, and

• robust postprocessor,

These functions were included in the toolbox to alow the evaluation of the

effect of applying different postprocessing techniques to the photometrically nor-

malized images. Note that in the INFace toolbox version 1.0 a default post-

processing procedure was applied after all photometric normalization techniques,
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namely, truncation of the histogram ends and scaling of the images dynamic range

to the 8-bit interval. With version 2.0 we made the postprocessing optional. The

procedure can be skipped by setting the normalize parameter, which is now

featured in all function prototypes, to 0. However, we do not encourage setting

the parameter to zero, since postprocessing is often crucial for the performance

of the photometric normalization technique. If you do not plan to use your own

postprocessor or to replace the default postprocessing procedure with another one

from this toolbox, leave the value of the parameter normalize set to its default

value of 1.

3.2.1 The histtruncate function

The histtruncate function truncates a specified percentage of the lower and

upper ends of an image histogram. The function has the following prototype:

[Y, sortv] = histtruncate(X, lower, upper).

Here, X denotes the input grey-scale image to be processed, lower denotes

the percentage of the lower part and upper denotes the percentage of the upper

part of the histogram that gets truncated. If you type

help histtruncate

you will get additional information on the function together with several

examples of usage.

As noted in the functions header, this function was again provided by Dr.

Peter Kovesi.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y = histtruncate(X, 3, 5);

figure,imshow(X);

figure,hist(X(:),255);

figure,imshow(uint8(Y),[]);

figure,hist(normalize8(Y(:)),255);

The code reads the image named sample image.bmp into the variable X

and truncates the histogram of X using the selected percentage of the lower and
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upper part of the histogram. After the execution of the code the original and the

processed image together with their histograms, are displayed in four separate

figures.

We have applied the above code to a sample image from the YaleB database.

The results of the processing are shown in Fig. 3.22.
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Figure 3.22: A sample image processed with the example code: original image with

its histogram (left), processed image with its histogram (right)

Below is an example of the effect of histogram truncation on photometrically

normalized images (with the SSR technique).

Figure 3.23: Sample images from the YaleB database normalized with the SSR

technique: without truncation (upper row), after histogram truncation

(lower row)

3.2.2 The robust postprocessor function

The robust postprocessor function applies to the robust postprocessing

procedure from the Tan and Triggs paper [10] to the input image. The function

has the following prototype:

Y=robust postprocessor(X, alfa, tao);.

Here, X denotes the input grey-scale image to be processed, and alfa and

tao denote hyper parameters of the technique. If you type
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help robust postprocessor

you will get additional information on the function together with several

examples of usage.

We have applied the above postprocessing procedure to sample images from

the YaleB database that were photometrically normalized using the Tan and

Triggs method (i.e., using only the gamma correction and Dog filtering parts).

Fig. 3.24 show the effect the postprocessing procedure has on the result. As we

can see, it is crucial to ensure comparable appearance of the images.

Figure 3.24: Sample image from the YaleB database processed with the Tan and

Triggs method: without robust postprocessing (upper row), with ro-

bust postprocessing (lower row).

3.3 The histograms folder

The folder named histograms contains the implementations of a number of his-

togram manipulating techniques. Specifically, it contains the following functions:

• rank normalization, and

• fitt distribution,

These functions were included in the toolbox, as they are able to manipulate

the histograms of the facial images, which is a common pre- or post-processing

step to photometric normalization. In fact, several studies have shown that his-

togram equalization or histogram remapping in conjunction with photometric

normalization techniques results in better face recognition performance than us-

ing photometric normalization techniques on their own. In the remainder of this

section we will focus on the description of the two techniques contained in the

histograms folder.
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3.3.1 The rank normalization function

The rank normalization function applies rank normalization to the pixel

intensity values of an image. This means that all pixels in an image are ordered

from the most negative to the most positive (from the one with the smallest

intensity value to the one with the largest intensity valuel). After the ordering

the first pixel is assigned a rank of one, the second the rank of two, ..., and the

last is assigned a rank of N, where N is the number of pixels in the image. This

procedure is identical to histogram equalization, except for the interval to which

the intensity values are mapped to. (For options on the interval take a look

at the description of the parameter ”mode”). Unlike Matlabs internal function

”histeq” this function also works with doubles, works faster and provides more

flexibility regarding the output range of the pixel intensity values. The function

has the following prototype:

Y=rank normalization(X,mode,updown).

Here, X denotes the input grey-scale image to be processed, mode is a

string determining the range of the output intensity values and updown a string

controlling the sort operation performed by the function. If you type

help rank normalization

you will get additional information on the function together with several

examples of usage.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y=rank normalization(X,’two’);

figure,imshow(X);

figure,hist(X(:),255);

figure,imshow(uint8(Y),[]);

figure,hist(normalize8(Y(:)),255);

The code reads the image named sample image.bmp into the variable X

and performs rank normalization on X. After the execution of the code the

original and the processed image together with their histograms, are displayed

in four separate figures.
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We have applied the above code to a sample image from the YaleB database.

The results of the processing are shown in Fig. 3.25.
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Figure 3.25: A sample image processed with the example code: original image with

its histogram (left), processed image with its histogram (right)

3.3.2 The fitt distribution function

The function fitt distribution fits a predefined distribution to the histogram

of an image. The function supports three target distributions, namely, the

normal, the lognormal and the exponential distribution. The function has the

following prototype:

Y=fitt distribution(X,distr,param).

Here, X denotes the input grey-scale image to be processed, distr is a

scalar value (i.e, 1,2,3) and determines the target distribution and param is

either a vector of parameters or a single parameter depending on the target

distribution. If the target distribution is normal or lognormal then param has to

be a 1×2 vector containing the mean and standard deviation of the distribution.

If the target distribution is exponential the only parameter is λ. If you type

help fitt distribution

you will get additional information on the function together with several

examples of usage. The reader is referred to [12] for more information on

histogram remapping.

An example of the use of the function is shown below:

X=imread(’sample image.bmp’);

Y=fitt distribution(X,1,[0,1]);

figure,imshow(X);
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figure,hist(X(:),255);

figure,imshow(uint8(Y),[]);

figure,hist(normalize8(Y(:)),255);

The code reads the image named sample image.bmp into the variable X

and fits the normal distribution with a mean value of 0 and a standard deviation

of 1 to the histogram of X. After the execution of the code the original and the

processed image together with their histograms, are displayed in four separate

figures.

We have applied the above code to a sample image from the YaleB database.

The results of the processing are shown in Fig. 3.26.

0 50 100 150 200 250
0

100

200

300

400

500

600

0 50 100 150 200 250
0

100

200

300

400

500

600

Figure 3.26: A sample image processed with the example code: original image with

its histogram (left), processed image with its histogram (right)

3.4 The auxilary folder

The folder named auxilary contains functions needed for the the photometric

normalization techniques to work. Specifically, the folder contains the following

functions:

• gamma correction,

• threshold filtering,

• adjust range,

• compute patch library,

• highboostfilter,

• highpassfilter,



3.5 The mex folder 43

• lowpassfilter,

• normalize8,

• pca,

• perform nl means,

• perform lowdim embedding,

• perform nl means adap, and

• symmetric extension.

Even though some of these function could be used on their own, they

are included in the toolbox only to provide some functionality to the main

functions in the photometric and histograms folders. If someone is interested in

their functionality, he/she can access the help of the function of interest by typing:

help function name

or for a list of the basic functionality of all functions in the auxilary folder:

help auxilary

3.5 The mex folder

The mex folder contains only a couple of C/C++ files needed for the creation of

the MEX files employed by the non-local means and adaptive non-local means

algorithm. The code in perform nlmeans mex.cpp was provided by Dr. Gabriel

Peyré.

3.6 The other folder

The other folder contains several BibTex files with references to papers describing

the individual techniques included in the INface toolbox v2.0.
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3.7 The demo folder

The demo folder contains three scripts named:

• photometric demo,

• histograms demo,

• combin demo,

• make new method demo,

• luminance demo,

The first is a demo script demonstrating the deployment of all photometric nor-

malization techniques on a sample image, the second is a demo script demon-

strating the deployment of the histogram manipulation functions, the third is a

demo script demonstrating how to combine photometric normalization techniques

and one of the histogram manipulation function, the fourth is a script demon-

strating how different functions from the toolbox can be combined to create new

normalization techniques, and the fifth is a demo script demonstrating how the

luminance functions can be computed.



4. Using the Help

The toolbox contains some basic help which offers additional information on each

of the functions and scripts in the INface toolbox. The help in the functions

is intended to be used as supplementary information on the functionality of the

toolbox.

4.1 Toolbox and folder help

The most basic information on the toolbox can be accessed by typing:

help INface tool,

or if you have changed the name of the folder:

help new folder name.

This command displays a list of folders in the toolbox and a basic description of

the functionality of each function and/or script in these folders.

You can also access only individual folder help by typing, e.g., for the

photometric folder:

help photometric.

4.2 Function help

To access the help of the individual functions (like always) just call the help

command followed by the name of the function of interest:

help function name.
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All functions (and scripts) are equipped with an extensive help section de-

scribing the functionality of the function and also include a reference to the

paper, where the implemented technique was proposed.



5. The INFace homepage

Together with version v2.0 of the INFace toolbox we have also created an official

toolbox homepage. The page is available from:

http://luks.fe.uni-lj.si/sl/osebje/vitomir/face tools/INFace/index.html

However, since we are currently in the process of redesigning our labora-

tory web page, the final URL of the web site may still change.

Figure 5.1: Screenshot of the official website

Note that only the official website features the up to date version of the
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toolbox with all bug fixes and most recent changes, while only major releases are

distributed to other repositories as well. Hence, if you have obtained the toolbox

from any other location that the official website, I suggest that you make sure

that you have obtained the most recent version.



6. Change Log

There has been a significant change in the INFace toolbox from version 1.0 to

version 2.0. Several new photometric techniques were added, some bugs were

fixed, novel pre- and post-processing techniques were included and much more ...

A brief list of changes that were incorporated to the INFace toolbox version

2.0:

• gamma correction was added (auxilary function),

• range adjustment of the image intensities was added (auxilary function),

• threshold filtering was added (auxilary function),

• DoG filtering was added (photometric normalization),

• Tan and Triggs technique was added (photometric normalization),

• robust Tan and Triggs post-processing was added (postprocessing function),

• Weberfaces technique was added (photometric normalization),

• multi-scale Weberfaces technique was added (photometric normalization),

• modified version of anisotropic diffusion technique was added (photometric

normalization),

• DCT-based normalization technique was fixed (bug fix),

• option for retrieving luminance functions was added to some functions (gen-

eral update),

• default post-processing (i.e., histogram truncation) technique was made op-

tional (general update),

• added new demo scripts (general update),

• return values in case of error were corrected (general update),
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• all of the help sections (i.e., the function headers) were updated (general

update),

• an install validation script was added (general update),

• several BibTex files were added to the “other” folder (general update),

• a postprocessing folder was added to the toolbox hierarchy (general update),

• the a new user manual was written (general update), and

• a new toolbox homepage was created (new webpage).

Note that one of the changes made to the toolbox was the addition of an

additional input argument to all photometric normalization techniques. The last

argument of all the photometric techniques is now the parameter normalize,

which controls whether the default postprocessing procedure is applied to the

normalized image or not. This option was added to enable researchers to exper-

iment with their own postprocessors. However, if you do not intend to use your

own postprocessor, you should not alter the default value of this argument, since

postprocessing is usually one of the most important steps of the normalization

procedure.

The presented addition allows for the development of illumination normaliza-

tion techniques comprised of:

• a preprocessing technique,

• the main photometric normalization technique, and

• a postprocessing technique.



7. Conclusion

The current version of the toolbox (INface v2.0) includes Matlab functions that

implement 21 photometric normalization techniques from the literature. If you

have authored a novel normalization technique, you are welcome to send me

the paper of the technique (or optionally the source code) and I will try to

include the technique in future versions of the toolbox. You can find my contact

information by following this link:

http://luks.fe.uni-lj.si/en/staff/vitomir/index.html.

Thank you for taking an interest in the INface toolbox.
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