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Abstract. Algorithms based on principal component analysis (PCA) form the basis of numerous
studies in the psychological and algorithmic face-recognition literature, PCA is a statistical tech-
nique and its incorporation into a face-recognition algorithm requires numerous design decisions.
We explicitly state the design decisions by introducing a generic modular PCA-algorithm, This
allows us to investigate these decisions, including those not documented in the literature.
We experimented with different implementations of each module, and evaluated the different
implementations using the September 1996 FERET evaluation protocol (the de facto standard
for evaluating face-recognition algorithms). We experimented with (i) changing the illumination
normalization procedure; (ii) studying effects on algorithm performance of compressing images
with JPEG and wavelet compression algorithms; (iii) varying the number of eigenvectors in the
representation; and (iv) changing the similarity measure in the classification process, We performed
two experiments. In the first experiment, we obtained performance results on the standard
September 1996 FERET large-gallery image sets. In the second experiment, we examined the
variability in algorithm performance on different sets of facial images. The study was performed
on 100 randomly generated image sets (galleries) of the same size. Our two most significant
results are (i) changing the similarity measure produced the greatest change in performance, and
(ii) that difference in performance of £10% is needed to distinguish between algorithms.

1 Introduction

Computer algorithms can serve as models for the human face-recognition function.
Directly comparing these models (algorithms) with human performance allows the
assessment of which models are biologically plausible. The closer the concordance
between human and mode!l performance, the greater the plausibility. The models need
not be comprehensive, ie account for all aspects of face recognition. Rather, one can
ascertain which properties of the human face-processing system are cotrrectly modeled.
For example, model A could correctly predict the effects of changes in iliuminations,
whereas model B could correctly account for changes in pose.

The starting point for numerous studies and lines of investigation were (and still
are) algorithms based on principal component analysis (PCA) (also known in the
literature as eigenfaces). PCA-based algorithms are popular because of the ease of
implementing them and their reasonable performance levels (Phillips et al 1997, 2000,
Rizvi et al 1998). Because of their popularity, PCA-based algorithms have become the
de facto benchmark algorithm.

PCA-based algorithms have been the basis of numerous research projects in both
psychophysics and computer vision. They have served as benchmarks for comparison
with new algorithms (Belhumeur et al 1997; Phillips 1999b; Swets and Weng 1996; Wilder
et al 1996; Zhao et al 1998), computational models in psychophysics (Hancock et al 1996;
O’Toole et al 2000; Valentin et al 1997; Valentine 1995), and the basis for face-recognition
algorithms (Barlett et al 1998; Etemad and Chellappa 1997; Kirby and Sirovich 1990;
Liu and Wechsler 1999; Moghaddam and Pentland 1994, 1998; O'Toole et al 1993;
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Penev and Atick 1996; Turk and Pentland 1991), PCA algorithms have been applied in
a broad spectrum of studies including face detection (Moghaddam and Pentland 1995;
Sung and Poggio 1998), face recognition (Brunelli and Poggio 1993; Fleming and Cottrell
1990; Hancock et al 1996; Turk and Pentland 1991), and sex classification (Abdi et al 1995;
Cottrell and Metcalfe 1991; O'Toole et al 1997). Psychologists and neuroscientists had
an active interest in PCA as a model for face processing prior to its adoption by the
computer vision community for automatic face recognition (Cottrell and Metcalfe 1991;
Fleming and Cottrell 1990; O'Toole et al 1988, 1991).

PCA is a statistical method for reducing the dimensionality of a data set while
retaining the majority of the variation present in the data set (Jolliffe 1986). Because
PCA is a statistical method for handling and analyzing data, a PCA-based face-recognition
algorithm needs an algorithmic supporting structure, Constructing this supporting struc-
ture requires a number of critical design decisions. Each of these design decisions
has the potential to affect the overall performance of the face-recognition algorithm.
Some of these design decisions have been stated explicitly in the literature— for example,
the similarity measure in the nearest-neighbor classifier. However, a large number of
decisions are not mentioned and are passed from researcher to researcher by word of
mouth. Two examples are the methods for normalizing illumination and the number
of eigenvectors included in the representation. Because the design details are not stated
explicitly, a reader cannot assess the merits of a particular implementation and the
associated claims, This can unnecessarily cast a shadow on performance claims of studies
where a PCA algorithm is used as a model or a benchmark. For example, does a PCA-
based algorithm fail (or succeed) to explain observed data because of a faulty design
decision? Or is the failure (or success) based on underlying properties of PCA? Knowl-
edge of the basic strengths and weaknesses of different implementations can provide
insight and guidance in designing studies or developing algorithms that build on PCA.

In this paper, we present a generic modular PCA-based face-recognition system.
Our PCA-based face-recognition system consists of normalization, PCA projection,
and recognition modules. Each module consists of a series of basic steps, where the
purpose of each step is fixed. However, we systematically vary the algorithm in each
step. For example, the classifier step will always recognize a face, but we experiment
with different classifiers.

Using the generic model for PCA-based algorithms, we evaluate different implementa-
tions. The generic model allows us to change the implementation in an orderly manner
and to assess the impact on performance of each modification,

Algorithm evaluations are conducted by following an evaluation protocol. An
evaluation protocol states how the test is conducted. This includes the quality of
images and the number of images in the training and testing sets, how the algorithms
are tested, how the results from algorithms are formatted, how the results are scored,
and what scores are computed.

Some basic terms are introduced here to describe our evaluation protocol. The
gallery is the set of known individuals. The images used to test the algorithms are called
probes. The identity of the face in a probe is not known to the algorithm. A probe is
either a new image of an individual in the gallery or an image of an individual not in
the gallery. Duplicates are probes of individuals in the gallery that are taken on a
different date, or under different conditions than the images stored in the gallery.
To compute performance, one needs both a gallery and probe set. The probes are
presented to an algorithm, and the algorithm returns the best match between each
probe and the images in the gallery, or, more generally, ranks the gallery by similarity
to each probe, Algorithm identification performance is reported on a cumulative
match characteristic (CMC) (see section 3.2 for details). The estimated identity of a probe
is the best maich. :
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Computational algorithms must solve two problems that map easily onto the
psychological tasks of recognition and identification. Recognition is the task of deter-
mining whether or not the face in a probe is of a person in the gallery. Identification
is the task of determining which individual is the best match to the probe. Note that
identification can be performed regardless of whether or not a face has been recognized.
In the psychology literature, identification is referred to as a forced-choice experiment.

Finally, a very common task performed by computational algorithms, but less
commonly performed by humans, is verification. Verification is a special case of recog-
nition. In verification, an algorithm or person is presented with a probe and a claimed
identity for the probe. The claim is either accepted or rejected, or, more generally, a
confidence in the validity of the claim is generated. Verification results are reported
on a receiver operator characteristic (ROC) (Macmillan and Creelman 1991).

The contents of the galleries and probe sets are described in the evaluation protocol.
If the evaluation protocol is appropriately designed, performance scores can be calcu-
lated for multiple galleries and probe sets. We report results for the standard galleries
and probe sets described in the September 1996 FERET evaluation protocol (Phillips
et al 2000). The September 1996 FERET evaluation was the last of three FERET evalu-
ations, which independently evaluated automatic face-recognition algorithms (Phillips
et al 1997, 1998, 2000; Rizvi et al 1998). The FERET evaluation and its associated
database have become the de facto standards in the automatic face-recognition
community. By testing on standard galleries and probe sels, the reader can compare
the performance of our PCA implementations with the algorithms tested under the
FERET program. The FERET protocol allows one to measure identification and
verification performance. In this paper we report identification results.

Computation of CMCs and ROCs requires a similarity measure between all probes
and gallery images. From a complete set of the similarity measures, identification and
verification performance can be computed. Knowing a rating of similarity between all
probes and gallery images is the point that distinguishes most algorithm evaluations
from psychological studies. Algorithms can easily compute a complete set of similarity
ratings or measures, whereas most psychological studies do not explicitly measure
these data. This results in psychological studies reporting performance for a single
point on a ROC or the top-rank score for forced-choice experiments. The top-rank
score is a single performance point on a CMC. It is not possible to draw a connection
between a single point on a ROC and a single point on a CMC. Therefore, under these
conditions, identification and verification are distinct problems.

For algorithms, identification and verification appear to be substantially different
results. However, if one has a complete set of similarity measures, there is a direct
connection between the two. Phillips (1999a) showed a duality between identification
and verification, and, under the duality relationship, identification performance is an
upper bound for verification performance. Or, more precisely, the cumulative match
characteristic curve is an upper bound for the ROC. Thus, because we compute a
complete set of similarity measures for each algorithm, we are generating information
relevant to both forced-choice and verification style experiments.

By analyzing a complete set of similarity measures one can study the structure
underlying facial processing. This was shown in O’Toole et al (2000), where algorithm
and human performance were compared. The comparison was done at the level and
similarity and typicality of individual faces, and showed a common bimodal structure
for both humans and algorithms for the perception of faces. The study included perfor-
mance data from seven of the algorithms reported in this paper (the classifier variations
in section 4.3.3). :

In this paper, we present the results of two experiments. In each experiment we
investigated a different aspect of measuring algorithm performance. In experiment 1,
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we systematically varied the components in our generic algorithm model. This allowed
us to determine which design decisions have the greatest impact on performance.
We varied the illumination normalization procedure, the number of eigenvectors in the
representation, and the similarity measure; and we studied the effects of compressing
facial images on algorithm performance. The effects of image compression on recogni-
tion are of interest in applications where image storage space or image transmission
time are critical parameters.

One of the key parameters in algorithms is image quality. We characterize image
match quality by the time between acquisition of the gallery and probe images of a
person, and changes in illumination, These factors have a major impact on perfor-
mance, and in numerous applications are major sources of variation among images.

In algorithm evaluation, two critical questions are often ignored. First, how does
performance vary with different galleries and probe sets? Second, when is a difference
in performance between two algorithms statistically significant? In experiment 2, we
looked at this question by randomly generating 100 galleries of the same size. We then
calculated performance on each of the galleries against two probe sets. The first set
consisted of probes taken on the same day as the corresponding gallery image. This set
represents algorithm performance under optimal conditions, and provides an upper
bound for performance of the algorithms tested. The second set consisted of probes
taken on different days than the corresponding gallery images. This examined perfor-
mance under realistic conditions. Because we have 100 scores for each probe category,
we can examine the range of scores, and the overlap in scores among different imple-
mentations of the PCA algorithm.

2 PCA-based face-recognition system
In this section we discuss each of the components in our generic PCA-~based algorithm.

2.1 Principal component analysis (PCA)

PCA is a statistical dimensionality-reduction method, which produces the optimal linear
least-squares decomposition of a training set. Kirby and Sirovich (1990) applied PCA to
representing faces and Turk and Pentland (1991) extended PCA to recognizing faces.
[For further details on PCA, see Fukunaga (1972), Jolliffe (1986), or Valentin et al (1994)]
In a PCA-based face-recognition algorithm, the input is a training set, ¢,,..., £y of N
facial images such that the ensemble mean of the training set is zero (3.¢, = 0).

1

In computing the PCA representation, each image is interpreted as a point in R"*",
where each image is n by m pixels. PCA finds the optimal linear least-squares represen-
tation in (N — 1)-dimensional space, with the representation preserving variance.(
The PCA representation is characterized by a set of N— 1 eigenvectors (e, ..., ey_,)
and eigenvalues (4;, ..., Ay_;). In the face-recognition literature, the eigenvectors can be
referred to as eigenfaces, We normalize the eigenvectors so that they are orthonormal.
The eigenvectors are ordered so that 4, > 1,,,.

The 4;s are equal to the variance of the projection of the training set onto the ith
eigenvector. Thus, the low-order eigenvectors encode the larger variations in the training
set (low order refers to the index of the eigenvectors and eigenvalues). The higher-order
eigenvectors encode smaller variations in the training set. Because these features encode
smaller variations, it is commonly assumed that they represent noise in the training set.
Because of this assumption and empirical results, higher-order eigenvectors are excluded
from the representation. Faces are represented by their projection onto a subset of
M < N — 1 eigenvectors, which we will call face space (see figure 1). Thus, a facial
image is represented as a point in an M-dimensional face space. The dimension M is a

(M Representation is (N — 1)-dimensional because the requirement that 3", = 0 removes one degree
of freedom. : i

i
|
1
1
|
q




Computational and performance aspects of PCA-based face-recognition algorithms 307
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Figure 1. Representation of a face as a point in face space. A face is represented by its projection
onto a subset of M eigenvectors. A set of facial images becomes a set of points ‘0O’ in face space.
The point marked by ‘X’ is a probe and is identified as the person in the gallery image nearest ‘X’.

design decision that is discussed in the paper. A gallery of K facial images is represented
as K points {g,, ..., gx} in face space.

A probe is identified by first projecting it into face space and then comparing
the projection to all gallery images. We denote a probe by p, A probe is compared to
gallery images by a similarity measure. The similarity between probe p, and gallery
image g, is denoted by s,(k). Two possible similarity measures are the Buclidean and
L, distances between p; and g,.

The identity of a probe is determined to be the gallery face, g, that minimizes
the similarity measure between p, and the g,s. In this paper we assume that there is
one image per person in the gallery, and g« uniquely references the identity of the
person. This recognition technique is called a nearest-neighbor classifier—a probe is
identified as the person in the gallery image nearest the probe in face space.

2.2 System modules

Our face-recognition system consists of three modules and each module is composed of
a sequence of steps (see figure 2). The first module normalizes the input image. The goal
of the normalization module is to transform the facial image into a standard format that
removes or attenuates variations that can affect recognition performance. This module
consists of four steps; figure 3 shows the results of processing for some of the steps in
the normalization module, The first step low-pass filters or compresses the original image.
Images are filtered to remove high-frequency noise. An image is compressed to save
storage space and reduce transmission time. The second step places the face in a standard
geometric position by rotating, scaling, and translating the center of eyes to standard
locations. The goal of this step is to remove variations in size, orientation, and location
of the face in an image. The third step masks background pixels, hair, and clothes.
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Figure 2. Block diagram of PCA-based face-recognition system.

Geometric Masking Ilumination
normalization normalization

Original JPEG (0.5 bpp)

Figure 3. An origina! image and the results of several steps in the normalization module.

This prevents image variations that are not directly related to the face from interfering
with the identification process. The fourth step attenuates illumination variation among
images, which is a critical factor in algorithm performance.

The second module performs the PCA decomposition on the training set, which
produces the eigenvectors and eigenvalues. We did not vary this module. All experiments
were conducted with the same training set, which was the one that was used for the
PCA-baseline algorithm in the September 1996 FERET evaluation (Phillips et al 2000).

The third module identifies the face in a normalized image, and consists of two
steps. The first step projects the image into face space. The critical parameter in
this step is the subset of eigenvectors used to represent the face, The second step
identifies faces with a nearest-neighbor classifier. Or, more precisely, the classifier
ranks the gallery images by similarity to the probe. The critical design decision in this
step is the similarity measure in the classifier. We presented performance results using
L, distance, L, distance, angle between feature vectors, and Mahalanobis distance.
Additionally, we created three new similarity measures by combining the Mahalanobis
distance with the L,, L,, and angle similarity measures.

3 Test design
3.1 FERET database
The FERET database provides a common database of facial images for both development
and testing of face-recognition algorithms and has become the de facto standard for
face recognition from still images (Phillips et al 1998, 2000).

The images in the FERET database were initially acquired with a 35-mm camera.
The film used was color Kodak Ultra. The film was processed by Kodak and placed

onto a CD-ROM via Kodak’s multiresolution technique for digitizing and storing digital
imagery.
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The colour images were retrieved from the CD-ROM and converted into 8-bit gray-scale
images.®®

The facial images were collected in 15 sessions between August 1993 and July 1996.
Sessions lasted one or two days, and the location and setup did not change during
a session. To maintain a degree of consistency throughout the database, the photog-
rapher used the same physical setup in each photography session. However, because
the equipment had to be reassembled for each session, there was variation from session
to session. This results in variations in scale, pose, expression, and illumination of the
face (see figure 4). For details of the FERET database, refer to Phillips et al (1996, 1998).

duplicate I fe duplicate 1T
Figure 4. Categories of images (example of variations).

In the FERET database, images of individuals were acquired in sets of 5 to 11
images. Each set includes two frontal views (fa and fb); a different facial expression
was requested for the second frontal image. For 200 sets of images, a third frontal
image was taken with a different camera and different lighting (fc).

One emphasis of the database collection was obtaining images of individuals on
different days (duplicate sets). A duplicate is defined as an image of a person whose
corresponding gallery image was taken on a different date or under different conditions,
eg wearing glasses or with hair pulled back. The database contains 365 duplicate sets of
images. For 91 duplicate sets, the time between the first and last sittings was at least
18 months.

3.2 Design rule

To obtain a robust comparison of algorithms, it is necessary to calculate performance
on a large number of galleries and probe sets. To allow scoring on muitiple galleries
and probe sets, we designed a new evaluation protocol. In our protocol, during the
evaluation an algorithm is given two sets of images: the target set and the query set.
We introduce this terminology to distinguish these sets from the galleries and probe
sets that are used in computing performance statistics.

An algorithm reports the similarity s;(k) between all query images ¢, in the query
set Q and all target images u, in the target set 7. This property allows greater flexibil-
ity in scoring and producing a detailed analysis of performance on multiple galleries
and probe sets. We can calculate performance for galleries that are subsets of the target
set (G < 7)) and for probe sets that are subsets of the query set (P c Q). For a given
gallery G and probe set P, the performance scores are computed by examining similar-
ity measures s,(k) for query images g; that are in the probe set (¢, € P C @) and for
target image u, that are in the gallery (w, e GC 7).

) Certain commercial equipment may be identified in order to adequately specify or describe the
subject matter of this work. In no case does such identification imply recommendation or endorse-
ment by the National Institute of Standards and Technology, nor does it imply that the equipment
identified is necessarily the best available for the purpose.
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In this paper we report identification results. In identification, one asks how good
an algorithm is at identifying a probe image; the question is not always “is the top
match correct?” but “is the correct answer in the top n matches?” This lets one know
how many images have to be examined to get a desired level of performance. The
performance statistics are reported as cumulative match scores, which are plotted as a
cumulative match characteristic (CMC),

The computation of an identification score is quite simple. Let 7 be a probe set and
|P| the size of P. We score probe set P against gallery G, where G = {g,, ..., g} and
P={p,, .... by} by comparing the similarity scores s;(k) for p, € P and g, € G. For
each probe image p, € P, we sort s;(-) for all gallery images g, € G. We assume that
a smaller similarity score implies a closer match. The function id (/) gives the index of
the gallery image of the person in probe p,, ie p, is an image of the person in g,.
A probe p; is correctly identified if s5;[id(7)] is the smallest score for g, € G. A probe p, is
in the top n if s:[id(¢)] is one of the »n smallest scores s;(+) for gallery G. Let R, denote
the number of probes in the top #. We report R,/|P|, the fraction of probes in the
top n. The CMC is a plot with the rank n on the horizontal axis and the cumulative
match score R,/|P| on the vertical axis. The value R,/|P| is the top rank score or
the fraction of probes correctly identified.

In reporting identification performance results, we state the size of the gallery and
the number of probes scored. The size of the gallery is the number of different faces
(people} contained in the gallery. For all results that we report, there is one image
per person in the gallery; thus, the size of the gallery is the number of images in the
gallery. The number of probes scored (also, size of the probe set) is |P|. For all runs
we computed a CMC. However, for most runs we only report the top rank score
unless the top rank score is not representative of the CMC. The probe set may contain
more than one image of a person and the probe set may contain an image of everyone
in the gallery. Every image in the probe set has a corresponding image in the gallery.
(Thus, there cannot be any false alarms)

4 Experiment 1

The purpose of experiment 1 was to examine the effects of changing the steps in
our generic PCA-based face-recognition system. We did this by establishing a baseline
algorithm and then varying the implementation of selected steps one at a time. Ideally,
we would test all possible combinations of variations. However, because of the number
of combinations, this is not practical, and so we varied the steps individually.

The baseline algorithm has the following configuration, The images were not filtered
or compressed. Geometric normalization consisted of rotating, translating, and scaling
the images so the center of the eyes were on standard pixels. This was followed
by masking the hair and background from the images. In the illumination normaliza-
tion step, the non-masked facial pixels were normalized by a histogram-equalization
algorithm (Pratt 1978). Then, the non-masked facial pixels were transformed so
that the mean, u, was equal to 0.0 and standard deviation, o, was equal to 1.0. The
geometric normalization and masking steps were not varied in the experiments in
this paper. :

The training set for the PCA consisted of 501 images (one image per person), which
produced 500 eigenvectors. The training set was not varied in the experiments in the
paper. In the recognition module, faces were represented by their projections onto the
first 200 eigenvectors and the classifier used the L, norm.
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4.1 Test sets, galleries, and probe sets

All images were from the FERET database, and the testing was done with the September
1996 FERET protocol. In this protocol, the target set contained 3323 images and the
query set 3816 images. All the images in the target set were frontal images. The query
set consisted of all the images in the target set.

To allow for a robust and detailed analysis, we report identification scores for
four categories of probes (see figure 4 for examples of the four categories). The size of
the galleries and probe sets for the four probe categories are presented in table 1. For
three of the probe categories, performance was computed by using the same gallery.
For the fourth category, a subset of the first gallery was used. The first gallery con-
sisted of images of 1196 people with one image per person. For the 1196 people, the
target and query sets contain fa and fb images from the same set. (The FERET images
were collected in sets, and in each session there are two frontal images, fa and fb, see
section 3.1) One of these images was placed in the gallery and the other was placed
in the FB probe set. The FB probes were the first probe category. (This category is
denoted by FB to differentiate it from the fb images in the FERET database.) (Note:
the query set contained all the images in the target set, so the probe set is a subset
of the query set) Thus, the FB probe set consisted of probe images taken on the same
day and under the same illumination conditions as the corresponding gallery image.

Table 1. Size of galleries and probe sets for the four probe categories.

Probe category

duplicate I duplicate II FB fe
Gallery size 1196 864 1196 1196
Probe set size 722 234 1195 194

The second probe category contained all duplicate frontal images in the FERET
database for the gallery images. We refer to this category as the duplicate I probes. The
third category was the fc probes (images taken the same day as the corresponding
gallery image, but with a different camera and lighting). The fourth category consisted
of duplicates for which there was at least one year between the acquisition of the probe
image and the corresponding gallery image; ie the gallery images were acquired before
January 1995 and the probe images were acquired after January 1996. We refer to this
category as the duplicate II probes. The gallery for the FB, duplicate I, and fc probes
was the same. The gallery for duplicate II probes was a subset of 864 images from
the gallery for the other categories. The smaller-sized gallery insured that there was at
least one year between acquisition of gallery images and probes.

4.2 Variations in the normalization module

421 Ilumination normalization. We experimented with three variations in the illumina-
tion normalization step. For the baseline algorithm, the non-masked facial pixels were
transformed so that the mean was equal to 0.0 and standard deviation was equal to 1.0
followed by a histogram-equalization algorithm. For the first variation, the non-masked
pixels were not normalized (original image). For the second variation, the non-masked
facial pixels were normalized with a histogram-equalization algorithm. For the third
variation, the non-masked facial pixels were transformed so that the mean was equal
to 0.0 and standard deviation equal to 1.0. The eigenvectors were regenerated for each of
the illumination normalization variations. The performance results from the illumination
normalization methods are presented in table 2.
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Table 2. Performance results for illumination normalization methods. Performance scores are
the top rank matches. ¢ = mean; ¢ = standard deviation.

Tllumination Probe category
normalization method .

duplicate I duplicate I  FB fc
Baseline 0.35 0.13 0.77 0.26
Original image 0.32 0.11 0.75 0.21
Histogram equation only 0.34 0.12 0.77 0.24
=00, ¢ =1.0 only 0.33 0.14 0.76 0.25

4.2.2 Compressing and filtering the images. We examined the effects of JPEG and wavelet
compression, and low-pass filtering (LPF) on recognition. For this experiment, the
original images were compressed and then uncompressed prior to being processed by
the geometric normalization step of the normalization module. For both compression
methods, the images were compressed approximately 16: 1 (0.5 bits/pixel). We experi-
mented with other compression ratios and found that performance was comparable.
The results are for eigenvectors generated from non-compressed or filtered images.
We found that regenerating the eigenvectors reduced performance. Because compression
algorithms usually low-pass filter the images, we decided to examine the effects on
performance of low-pass filtering the original image. The filter was a 3 x 3 spatial filter
with a center value of 0.2 and the remaining values equal to 0.1, Table 3 reports
performance for the baseline algorithm, JPEG and wavelet compression, and low-pass
filtering.

Table 3. Performance score for low-pass filter, JPEG, and wavelet compressed images (0.5 bits/pixel
compression). Performance scores are the top rank matches.

Normalization Probe category

duplicate I duplicate II FB fc
Baseline 0.35 0.13 0.77 0.26
JPEG 0.35 0.13 0.78 0.25
Wavelet 0.36 0.15 0.79 0.25
LPF 0.36 0.15 0.79 0.24

4.3 Variations in the recognition module

4.3.1 Number of low-order eigenvectors. The higher-order eigenvectors, which are associ-
ated with smaller eigenvalues, encode small variations and noise among the images
in the training set. One would expect that the higher-order eigenvectors would not
contribute to recognition, and removing them from the representation would improve
performance. We examined this hypothesis by computing performance as a function
of the number of low-order eigenvectors in the representation. The representation
consisted of ey, ..., ¢,, n =50, 100, ..., 500, where e,;s are the eigenvectors generated
by the PCA decomposition. Figure 5 shows the top rank score for FB and duplicate
I probes as the function of the number of low-order eigenvectors included in the
representation in face space. This shows that performance increases as the first 150
eigenvectors were added to the representation. For eigenvectors 150 to 225 there was

very little change in performance, and after 225 eigenvectors were included, performance
slowly decreased.
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4.3.2 Removing low-order eigenvectors. The low-order eigenvectors encode gross differences
among the images in the training set. If the low-order eigenvectors encode variations
such as lighting changes, then performance may improve by removing the low-order
eigenvectors from the representation. We looked at this hypothesis by removing the Ist,
2nd, 3rd, and 4th eigenvectors from the representation; ie the representation consisted
of e, ..., ey, i = 1,2,3,4,5 The performance results from these variations are given
in table 4. Among the different category of probes, there is a noticeable variation in
performance for fc probes as shown in figure 6.

Table 4. Performance of the baseline algorithm with low-order eigenvectors removed. Performance
scores are the top rank malches.

Number of low-order Probe category
eigenvectors removed -
duplicate [ duplicate 11 B fe
0 (baseline) 0.35 0.13 0.77 0.26
1 0.35 8.15 0.75 0.38
2 0.34 0.14 0.74 0.36
3 0.31 0.14 0.72 0.37
4 0.20 0.09 0.50 0.22
1.0 _
o—o Baseline
0.9 n—n 1st eigenvector removed
08l »—o 2nd eigenvector removed
g 3 »—a 3rd eigenvector removed
§ 0.7V +—v 4th eigenvector removed
g ol fT
s i 1 3
E 0.5 | firs i : : :
-é e e S R
0'2 : . .
; 3 | : ; | : ; : Figure 6. Performance on fc probes with
0.1 o e J 1st, 2nd, 3rd, and 4th eigenvectors
0.0 ‘ : i ’ i ’ ‘ i ‘ removed.

0 10 20 30 40 50 60 70 B8O 90 100
Rank
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4.3.3 Nearest-neighbor classifier. We experimented with seven similarity measures for
the classifier, which are listed in table 5, along with their performance results. (Details
of the similarity measures are given in appendix A) Among the four categories of probes,
the fe probes show the most variation in performance across the seven classifiers. Because
of this variation, we present the cumulative match scores for the fc probes in figure 7.

Table 5. Performance scores based on different nearest-neighbor classifier. Performance scores
are the top rank matches.

Nearest-neighbor Probe category
classifier )
duplicate I duplicate II FB fe

Baseline (L,) 0.35 0.13 0.77 0.26
Euclidean (L,) 0.33 0.14 0.72 0.04
Angle 0.34 0.12 0.70 0.07
Mahalanobis 0.42 0.17 0.74 0.23
L, + Mahalanobis 0.31 0.13 0.73 0.39
L, + Mahalanobis 0.35 0.13 0.77 0.31
Angle 4+ Mahalanobis 0.45 0.21 0.77 0.24

1.0 r . .

i : o—o Baseline (L)

0.8 foom- —s Angle
g ' &— L, + Mahalanobis
2 0.7 +—a L, + Mahalanobis
8 06 = Angle + Mahalanobis
g ' (| g »—+ Mahalanobis
g 0.5 |-/# ; B .
H 04
=
§ 03 ]
“ o2t

Figure 7. Effects of nearest-neighbor
0.1 J classifier for face recognition. Perfor-
0.0 mance scores for fe probes.

0 10 20 30 40 50 60 70 80 90 100
Rank

4.4 Discussion

In experiment 1, we conducted experiments that systematically varied the steps in each
module on the basis of our PCA-based face-recognition system. The goal of this experi-
ment was to understand the effects of these variations on performance.

In the normalization module, we experimented with varying the illumination
normalization and compression steps. The results show that performing an illumina-
tion normalization step improves performance, but the particular implementation is
not critical. The results also show that compressing or filtering the images does not
affect performance significantly.

In the recognition module, we experimented with the three classes of variations.
First, we varied the number of low-order eigenvectors in the representation from 350
to 500 by steps of 50. Figure 5 shows that performance increases until approximately
200 eigenvectors are included in the representation and then performance decreases
slightly. Representing faces by the first 40% of the eigenvectors is consistent  with
results on other facial image sets.

Second, removing the 1st eigenvector resulted in an overall increase in performance
(table 4). The largest increase was observed with the fe probes. This increase is further
highlighted in figure 6. The low-order eigenvectors encode the greatest variations among

{
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the training set. The most significant difference between the fc probes and the gallery
images was a change in lighting. If the low-order eigenvectors encode lighting differ-
ences, then this would explain the substantial increase in performance by removing
the 1st eigenvector.

Third, changing the similarity measure in the nearest-neighbor classifier produced
the largest variation in performance. For duplicate I probes, performance ranged from
0.31 to 045, and for fe probes the range was from 0.07 to 0.39. For duplicate I, dupli-
cate I, and FB probes, the angle + Mahalanobis distance performed the best. For the
fc probes, the L, + Mahalanobis distance performed the best. But, this distance was
the worst for the duplicate I probe.

Both removing low-order eigenvectors from the representation and changing the
similarity measure improved performance over the baseline algorithm. This naturally
raises the following question: what is the effect of combining an alternative similarity
measure and removing the low-order eigenvectors? Does the improvement in performance
for both variations come from exploiting the same property in facial images, and
combining them will not improve performance? Or, does cach method exploit different
properties, and will combining the two variations increase performance beyond that
achieved for individual variations? To examine this question, we looked at removing the
low-order eigenvectors for the angle + Mahalanobis and L, + Mahalanobis similarity
measures. We selected the angle + Mahalanobis measure because it exhibited the best
performance for the duplicate I and II, and FB probes, and the L, + Mahalanobis
measure because it had the best performance for the fc probes. The results appear in table 6.

Table 6. Performance of the angle +- Mahalanobis classifier and of the L, 4+ Mahalanobis classifier
with low-order eigenvectors removed. Performance scores are the top rank matches.

Number of low-order Probe category
eigenvectors removed

duplicate I duplicate II FB fc
Angle + Mahalanobis classifier
0 0.45 0.21 0.77 0.24
I 0.45 0.22 0.77 0.46
2 0.44 0.21 0.77 0.47
3 0.44 0.19 0.79 0.46
4 0.44 0.19 0.79 0.43
L, + Mahalanobis classifier
0 0.31 0.13 0.73 0.39
1 0.30 0.13 0.73 0.39
2 0.30 0.13 0.72 0.41
3 0.30 0.12 0.72 0.40
4 0.29 0.12 0.72 0.40

For the L, + Mahalanobis similarity measure there was only a slight increase in
performance for fc probes. However, for the angle +- Mahalanobis similarity measure
there was a substantial increase in performance for f¢ probes from (.24 for no eigen-
vectors removed to 0.47 for two eigenvectors removed, This was an improvement over
all I, + Mahalanobis similarity measure results. For both classifiers, there was a slight
change in performance for the three remaining probe categories. This was consistent
with the results in table 4 when low-order eigenvectors were removed from the baseline
algorithm.

In combining removal of the low-order eigenvectors with changes in the similarity
measure we found an overall increase in performance for fe probes with the angle
+ Mahalanobis similarity measure. Thus, for this similarity measure, combining the
two variations increased performance over implementing just one of the variations.
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Because of the variation in performance, it is clear that selecting the similarity
measure for the classifier is the critical decision in designing a PCA-based face-recogni-
tion system. The second critical decision is deciding if removing the low-order eigenvectors
is appropriate for the selected classifier. However, both these decisions are dependent
on the type of images in the galleries and probe sets that the system will process.

5 Experiment 2

In experiment 1, for some variations in components, the range of performance was
small, whereas, for others, the range was considerable, ie the nearest-neighbor classifier.
The natural question is: When is the difference in performance between two variations
significant? In experiment 2 we examine this question by quantifying the range of
performance for each of the similarity measures in the previous experiment on 100
galleries. We selected the similarity measures because they had the greatest effect on
performance of the variations studied in the previous experiment.

To address this question, we randomly generated 100 galleries of 200 individuals,
with one frontal image per person. Each gallery was generated without replacement
from the FB gallery of 1196 individuals in experiment 1. (Thus, there was overlap
between galleries) Then we scored each of the galleries against the FB and duplicate I
probes for each of the seven classifiers in experiment 1. (There were not enough fec
and duplicate II probes for all random galleries to compute performance statistics.)
For each randomly generated gallery, the corresponding FB probe set consisted of the
second frontal image for all images in that gallery; the duplicate I probe set consisted
of all duplicate images for each image in the gallery. We measured performance by
the top rank score using the fraction of probes that were correctly identified.

For an initial look at the range in performance, we examined the baseline algorithm
(L, similarity measure). For each classifier and probe category, we had 100 different
scores. Figure 8 presents the histogram of top rank scores for the baseline algorithm
for both FB and duplicate I probe sets. This shows a range in performance ranges
from 0.80 to 0.92 for FB probes, from 0.29 to 0.59 for duplicate I probe. There is
clearly a large range in performance across the 100 galleries. There were similar distribu-
tions of scores for the six remaining similarity measures.

We summarize performance with a truncated range of top rank scores for the seven
different nearest-neighbor classifiers in figure 9. Figure 9a shows the range for FB probes
and figure 9b for duplicate I probes. For each classifier, we mark the median by x, the
10th percentile by +, and 90th percentile by . We plotted these statistics because
they are robust and insensitive to outliers. From these studies, we get a robust estimate
of the overall performance of each classifier,
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Figure 8. Histogram of top rank scores of the baseline algorithm (L; similarity measure) for
(a) FB probes and (b) duplicate I probes.
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5.1 Discussion

The main goal of experiment 2 was to estimate when the difference in performance
was significant. From figure 9, the range in scores is approximately +0.05 about the
median for all 14 runs. This suggests a reasonable threshold for measuring significant
difference in performance for the classifiers is ~0.10.
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Figure 9. The range of top rank scores from seven different nearest-neighbor classifiers.
The nearest neighbor-classifiers presented are: (1) L;, (2} La, (3) angle, (4) Mahalanobis,
(5) L, + Mahalanobis, (6) L, + Mahalanobis, and (7) angle + Mahalanobis. (a) FB probes and
(b) duplicate I probes.

The results for duplicate I probes in experiment 2 are consistent with the results
in experiment 1. In table 5, the top classifiers were the Mahalanobis and angle +
Mahalanobis and these two classifiers produce better performance than the other
methods as shown in table 7. In both experiments, the L; + Mahalanobis received the
lowest scores. This suggests that for duplicate I scores the angle + Mahalanobis or
Mahalanobis distance should be used. It follows from the results of this experiment
that performance of smaller galleries can predict relative performance on larger galleries.

For FB probes, there was not as sharp a division among classifiers. One possible
explanation is that in experiment 1 the top match scores for the FB probes did not
vary as much as the duplicate I scores. There is consistency among the best scores
(L,, L, + Mahalanobis, and angle + Mahalanobis). The performance of the remaining
classifiers can be grouped together. The performance scores of these classifiers are
within each other’s error margins. This suggests that either the L,, L, + Mahalanobis,
or angle + Mahalanobis distance should be used.

6 Conclusion
We have presented a design methodology of configuring PCA-based algorithms based
on empirical performance resuits. The heart of the methodology is a generic modular
design for PCA-based face-recognition systems. This allowed us to systematically vary
the components and measure the impact of these variations on performance. Our
experiments show that the quality and type of images to be processed are the driving
factors in determining the performance of PCA-based systems.

On the basis of these experiments, we propose a new algorithm that is a combination
of the variations studied. The components of the proposed algorithm are:

e perform illumination normalization (i = 0.0 and o = 1.0),
e low-pass filter the images,

e remove the first low-order eigenvector, and

e employ the angle + Mahalanobis similarity measure.
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Table 7 presents the identification scores for the baseline and proposed algorithms,
and the combined variation of angle + Mahalanobis classifier and removing the first
two eigenvectors. For FB probes, the scores for all three algorithms are not signifi-
cantly different. The proposed algorithm has better performance scores for duplicate |
and Il probe sets. The algorithm with angle + Mahalanobis classifier and removing
the first two eigenvectors has better performance scores for fc probes. This shows that
a substantial increase in performance can be achieved over the baseline algorithm,
and the design of the best algorithm is not necessarily one of the standard configura-
tions in the literature.

Table 7. Comparison of baseline and proposed algorithms, and combination angle + Mahalanobis
and removal of first two eigenvectors. Performance scores are the top rank matches.

Algorithm Probe category

duplicate T duplicate IT FB fc
Baseline 0.35 0.13 0.77 0.26
Proposed 0.49 0.26 0.78 0.26
Angle + Mahalanobis and 0.44 0.21 0.77 0.47

remove two eigenvectors

Another important observation from these results is that the effect on performance
of combining variations is nonlinear. This is illustrated by two cases from our experi-
ments. In the first case, combining the angle + Mahalanobis similarity measure with
removal of the leading eigenvectors produced an increase in performance greater than
the individual variations for fc probes. For fc probes, changing to the baseline algo-
rithm (L,) to angle 4+ Mahalanobis similarity resulted in a decrease in performance
from 0.26 to 0.24, and removing the leading eigenvector resulted in an increase
in performance from (.26 to 0.38. The combination of these two variations resulted in
performance of 0.47, which is greater than the sum of the individual variations. In
case two, which is the other end of the spectrum, we combined the I, 4+ Malahanobis
distance and removing the leading eigenvectors. Both variations individually increased
performance for fc probes, but combined they did not produce a larger change.

From the series of experiments with PCA-based face-recognition systems, we have
come to five major conclusions.

First, the selection of the nearest-neighbor classifier is the most critical design decision
for PCA-based algorithms. Proper selection of the nearest-neighbor classifier is essen-
tial to achieve the best possible performance scores. Furthermore, we have looked at
similarity measures that achieve better performance than those generally considered in
the literature.

Second, for the performance difference between two algorithms to be significant, there
needs to be at least a 0.10 difference in the cumulative match scores.

Third, performance scores vary among the probe categories. Thus, the design of an
algorithm needs to take into account the type of images that the algorithm will process.
The FB and duplicate I probes are least sensitive to system design decisions, while fe
and duplicate II probes are the most sensitive.

Fourth, the performance within a category of probes can vary greatly. This suggests
that, when comparing algorithms, performance scores from multiple galleries and
probe sets need to be examined. We generated 100 galleries and calculated performance
against fb and duplicate probes. Then we examined the range of scores and the overlap
in scores among different implementations.
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Fifth, JPEG and wavelet compression algorithms do not degrade performance. This is
important because it indicates that compressing images to save transmission time and
storage costs will not reduce algorithm performance.

For psychophysics studies, our conclusions have a number of implications. First,
face-recognition studies should include a range of image qualities, For example, when
measuring the concord between humans and algorithms, the results should be based
on experiments for more than one type of facial image. Second, the details of an
algorithm implementation can have significant impact on results and conclusion,
By pointing out the most significant variations in an implementation, the accord
between these variations and humans can be measured. An example of this is found in
O’Toole et al (2000), which included the different classifier variations in a study. This
study showed that the classifier makes a difference in how faces are perceived. More
significantly, the classifiers fell into the same two classes as humans. Without studies
like the one in this paper, one would not have been able to easily determine what
variations of a PCA-based algorithm should be included in studies like O’Toole et al.
This could result in researchers failing to observe key properties of how humans and
algorithms perceive and process faces.
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Appendix

We mathematically describe the similarity measure used in the nearest-neighbor
classifiers. The variables x, y, and z are k-dimensional vectors and x;, y;, and z; are
the ith components of the vectors.

Al L, distance: .
d(x,y) =lx—y| =D |x = »l
i=1
A2 L, distance:
k

d(x,y) = |lx ““.V”2 = Z(xi "J’i)z
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A3 Angle between feature vectors:
k
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A4 Mahalanobis distance:
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where 1, = eigenvalue of ith eigenvector. The values z, are used in the following three
distances.

A5 L, + Mahalanobis distance:
k
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A6 L, 4+ Mahalanobis distance:
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A7 Angle + Mahalanobis distance:
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