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ABSTRACT OF THESIS

ANALY SIS OF PCA-BASED AND FISHER DISCRIMINANT-BASED IMAGE
RECOGNITION ALGORITHMS

One method of identifying images is to measure the similarity between images. Thisis
accomplished by using measures such as the L, norm, L, norm, covariance,

Mahalanobis distance, and correlation. These similarity measures can be calculated on
the images in their original space or on the images projected into a new space. | discuss
two alternative spaces in which these similarity measures may be calculated, the subspace
created by the eigenvectors of the covariance matrix of the training data and the subspace
created by the Fisher basis vectors of the data. Variations of these spaces will be
discussed as well as the behavior of similarity measures within these spaces.
Experiments are presented comparing recognition rates for different similarity measures
and spaces using hand labeled imagery from two domains. human face recognition and

classifying an image as a cat or a dog.
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1. Introduction

Two image recognition systems are examined, eigenspace projection and Fisher
discriminants. Each of these systems examinesimages in a subspace. The eigenvectors
of the covariance matrix of the training data create the eigenspace. The basis vectors
calculated by Fisher discriminants create the Fisher discriminants subspace. Variations
of these subspaces are examined. Thefirst variation is the selection of vectors used to
create the subspaces. The second variation is the measurement used to calculate the
difference between images projected into these subspaces. Experiments are performed to

test hypotheses regarding the relative performance of subspace and difference measures.

Neither eigenspace projection nor Fisher discriminants are new ideas. Both have been
examined by researches for many years. It isthe work of these researches that has helped
to revolutionize image recognition and bring face recognition to the point where it is now

usable in industry.

1.1 Previous Work

Projecting images into eigenspace is a standard procedure for many appearance-based
object recognition algorithms. A basic explanation of eigenspace projection is provided
by [20]. Michael Kirby was the first to introduce the idea of the low-dimensional
characterization of faces. Examples of his use of eigenspace projection can be found in

[7,8,16]. Turk & Pentland worked with eigenspace projection for face recognition [21].



More recently Shree Nayar used eigenspace projection to identify objects using a

turntable to view objects at different angles as explained in [11].

R.A. Fisher developed Fisher’s linear discriminant in the 1930's[5]. Not until recently

have Fisher discriminants been utilized for object recognition. An explanation of Fisher
discriminants can be found in [4]. Swets and Weng used Fisher discriminantsto cluster
images for the purpose of identification in 1996 [18,19,23]. Belhumeur, Hespanha, and
Kriegman also used Fisher discriminants to identify faces, by training and testing with

several faces under different lighting [1].

1.2 A General Algorithm

Animage may be viewed as a vector of pixels where the value of each entry in the vector
is the grayscale value of the corresponding pixel. For example, an 8x8 image may be
unwrapped and treated as a vector of length 64. Theimageissaid to sit in N-dimensional
space, where N is the number of pixels (and the length of the vector). This vector

representation of the image is considered to be the original space of the image.

The original space of an imageisjust one of infinitely many spaces in which the image
can be examined. Two specific subspaces are the subspace created by the eigenvectors of
the covariance matrix of the training data and the basis vectors calculated by Fisher
discriminants. The majority of subspaces, including eigenspace, do not optimize

discrimination characteristics. Eigenspace optimizes variance among the images. The



exception to this statement is Fisher discriminants, which does optimize discrimination

characteristics.

Although some of the details may vary, there is a basic algorithm for identifying images
by projecting them into a subspace. First one selects a subspace on which to project the
images. Once this subspace is selected, all training images are projected into this
subspace. Next each test imageis projected into this subspace. Each test imageis
compared to all the training images by a similarity or distance measure, the training
image found to be most similar or closest to the test image is used to identify the test

image.

1.3 Why Study These Subspaces?

Projecting images into subspaces has been studied for many years as discussed in the
previous work section. The research into these subspaces has helped to revolutionize
image recognition algorithms, specifically face recognition. When studying these
subspaces an interesting question arises. under what conditions does projecting an image
into a subspace improve performance. The answer to this question is not an easy one.
What specific subspace (if any at al) improves performance depends on the specific
problem. Furthermore, variations within the subspace also effect performance. For
example, the selection of vectorsto create the subspace and measures to decide which

images are a closest match, both effect performance.



1.4 Organization of Following Sections

| discuss two alternative spaces commonly used to identify images. In chapter 2, |
discuss eigenspaces. Eigenspace projection, also know as Karhunen-Loeve (KL) and
Principal Component Analysis (PCA), projects images into a subspace such that the first
orthogonal dimension of this subspace captures the greatest amount of variance among
the images and the last dimension of this subspace captures the least amount of variance
among the images. Two methods of creating an eigenspace are examined, the original
method and a method designed for high-resolution images know as the snapshot method.
In chapter 3, Fisher discriminantsis discussed. Fisher discriminants project images such
that images of the same class are close to each other while images of different classes are
far apart. Two methods of calculating Fisher discriminants are examined. One method is
the original method and the other method first projects the images into an orthonormal

basis defining a subspace spanned by the training set.

Once images are projected into one of these spaces, a similarity measure is used to decide
which images are closest matches. Chapter 4 discusses variations of these two methods,
such as methods of selecting specific eigenvectors to create the subspace and similarity
measures. In chapter 5, | discuss experiments performed on both these methods on two
datasets. Thefirst dataset isthe Cat & Dog dataset, which was developed at Colorado
State University. The second dataset is the FERET dataset, which was made available to

me by Jonathan Phillips at the National Institute of Standard and Technology [10,12,13].



2. Eigenspace Proj ection

Eigenspace is calculated by identifying the eigenvectors of the covariance matrix derived
from a set of training images. The eigenvectors corresponding to non-zero eigenval ues of
the covariance matrix form an orthonormal basis that rotates and/or reflects the imagesin

the N-dimensional space. Specifically, each image is stored in avector of size N.

X = [xi Xy ]T (1)

The images are mean centered by subtracting the mean image from each image vector™.

)‘(i:xi-m,wherem=£(;°1pxi (2)

i=1

These vectors are combined, side-by-side, to create a data matrix of size NxP (where Pis
the number of images).

X=|x* | x* | .. | x| 3)
The data matrix X is multiplied by its transpose to calcul ate the covariance matrix.

W=XXT  (4)

This covariance matrix has up to P eigenvectors associated with non-zero eigenvalues,

assuming P<N. The eigenvectors are sorted, high to low, according to their associated

eigenvalues. The eigenvector associated with the largest eigenvalue is the eigenvector

! The bar notation here is slightly nonstandard, but is intended to suggest the relationship to the mean. A
complete glossary of symbols appearsin Appendix I.



that finds the greatest variance in theimages. The eigenvector associated with the second
largest eigenvalue is the eigenvector that finds the second most variance in the images.
This trend continues until the smallest eigenvalue is associated with the eigenvector that

finds the least variance in the images.

2.1 Recognizing Images Using Eigenspace, Tutorial on Original M ethod

I dentifying images through eigenspace projection takes three basic steps. First the
eigenspace must be created using training images. Next, the training images are
projected into the eigenspace. Finally, the test images are identified by projecting them

into the eigenspace and comparing them to the projected training images.

1. Create Eigenspace
The following steps create an eigenspace.

1. Center data: Each of the training images must be centered. Subtracting the mean
image from each of the training images centers the training images as shown in
equation (2). The mean image is a column vector such that each entry isthe
mean of all corresponding pixels of the training images.

2. Createdata matrix: Once the training images are centered, they are combined
into a data matrix of size NxP, where P is the number of training images and each
column is asingle image as shown in equation (3).

3. Createcovariance matrix: The data matrix is multiplied by its transpose to

create a covariance matrix as shown in equation (4).



4. Computetheeigenvalues and eigenvectors. The eigenvalues and
corresponding eigenvectors are computed for the covariance matrix.
W =LV (5
here V isthe set of eigenvectors associated with the eigenvalues L .

5. Order eigenvectors: Order the eigenvectors v, I V according to their
corresponding eigenvalues |, T L from high to low. Keep only the eigenvectors

associated with non-zero eigenvalues. This matrix of eigenvectorsisthe
eigenspace V , where each column of V isan eigenvector.
V=l | v, | e |V (6)
2. Project training images
Each of the centered training images (X' ) is projected into the eigenspace. To project an
Image into the eigenspace, calculate the dot product of the image with each of the ordered
eigenvectors.
X'=V'x' (7

Therefore, the dot product of the image and the first eigenvector will be the first valuein
the new vector. The new vector of the projected image will contain as many values as
eigenvectors.
3. ldentify test images
Each test image is first mean centered by subtracting the mean image, and is then

projected into the same eigenspace defined by V .

)7‘=y‘-m,wherem:%§xi (8)

i=1

and



y' =Vy' (9

The projected test image is compared to every projected training image and the training
image that is found to be closest to the test image is used to identify the training image.
The images can be compared using any number of similarity measures; the most common

isthe L, norm. | will discuss the different similarity measuresin section 4.3.

The following is an example of identifying images through eigenspace projection. Let
the four images in Figure 1 be training images and let the additional image in Figure 1 be

atest image. The four training images and the mean image are:

E225() 610 U €196 E255() €171.500
u u e u u u

2’229(J 2’219(J 835 2223(J gL76.5ol,J
e48u 8244 2340 8240 81355 U
£251] €255, 23201 €255 £248.25,
x'=€330 x*=€180 x*=€590 x*=€0U0 m=¢€2750U
e u e u e u e u e u
a238y 247 a244 a255( a246.00y;

€o U eqz7u €243U €49U €127.25U

e u e u e u e u e u
&255(] &255() 857 &255() &205.50(
&217Y &2 4 &6} &35 &170.004

The centered images are:

é5350 é 161.500 é 2450 U ¢8350
e u e u e u e u
é&mg éamg émm% émmg
& 84.500 - 108.500 €101.50 U €91.50 U
e u e u e u e u
e 2.75 l.:J e 6.75 l.:J é- 16.25@ e 6.75 l.:J
x'=e550 U x*=€-950U x*=€ 3150 U x*=¢€ 27.50U
e u e u e u e u
&- 8.00 & 1.00 &-200 & 9.00 g
€127.25U € 110.25Y €115.75 U €121. 754
e u u e u e u
6 49.50 ( é 49.50 ( & 148.50( €9.49.50(
&47.00 Y & 168.001 & 56.00 { & 65.00 Y



-

Figure 1. Four training images and onetest image.

Combine al the centered training images into one data matrix:

Calculate the covariance matrix:

636517
é
& 3639
823129
8- 778
W=CC" =€ 304
e
é 113
£24000
& 4851
36446

¢ 5350 - 161.50
g 5250 42,50
é- 8450 - 108.50
S 275 675
C=¢€ 550 - 9.50
5-800 100
g 127.25 - 110.25
& 4950 4950
€ 4700 - 168.00
3639 23129 - 778
26747 -19155 3045
- 19155 37587 - 1997
3045 -1996 363
- 5851 1247 - 747
24 1188 78
- 22083 45603 - 2153
28017 - 20097 3218
- 9574 25888 - 1476

2450 8350

- 14150 4650

10150  91.50

-1625 675

3150 - 27.50U

- 200  9.00 {

11575 12175

- 14850 49.50

5600  65.00 4
304 113 24000 - 4851 36446 {
- 5851 324 - 22083 28017 - 9574
1247 1188 45603 - 20097 25888 U
- 7465 78 -2153 3217 - 1476
1869 - 364 645 - 6237 1831 U
~34 150 1772 3% -7l §
6455 1772 56569 - 22919 26937 {
- 6237 396 - 22919 29403 - 11088(
1831 - 71 26937 -11088 37794 Y4

The ordered non-zero eigenvectors of the covariance matrix and the corresponding

eigenvalues are:



6 0.356 & 0.552() & 0.2640
e u e u e u
= 0.2799 & 0.4899 5 0.347 g
€0.480 U 80.044 U 80.309 U
e u e u e u
& 0.031; & 0.048; 50064
v, =€0035U v,=€0.105 0 v, =& 0.2220
e U e u e u
a 0.009 & 0.004; 6 0.078
e0560U 0112 ! £0585
e-0296u e0492u e0401u
€ 0.402 { & 0.4328 & 0.3014

|, =153520 | , = 50696 |, =22781

The eigenspace is defined by the projection matrix

¢0356 - 0552 - 0.2640
& 0279 -0489 0347
€0480 0044 0309 U
& 0031 -0048 0064

V= S 0035 0.105 - 0.2223
20009 - 0004 0078
2 0560 0112 0585 3
& 0296 0492 0401
€0402 - 0432 - 0.391Y

The four centered training images projected into eigenspace are:

e 103.09¢ & 265.92(
Xt=VTxt= 11731u X2 =V'x 2—2 98.29 3
g 96. 57[;| & 47.45 §

6229.76 () 6139.24

53 T—S_é U~4_ T—4_é l:l
X3 =VTx -(23125.90(J X4 =VTx =& 106.88@
& 46.14§ 8 9526 {

The test image viewed as a vector and the centered test image are:

10



€200 é- 1515
2440 S 675
é44u é-885u
é, .U é G
§246l;| e 2.25 (
y1=2213 91:2-6.5 3
8244y é -2
€4 U € 123.254
2255['J e 49.5 G
u e . u
€24 § - 168
The projected test imageis:
é 266.65u
~1_\yTol € u
y " =V'y —é80.75 a
g 506 {

The L, normsare 296, 18, 508 and 449 of the test image y* and the training images x,
x*, x* and x* respectively. By comparing the L, norms, the second training image x°
is found to be closest to the test image y*, therefore the test image y* isidentified as

belonging to the same class of images as the second training image x>. By viewing the

original images, one seesimage y' ismost like x°.

2.2 Tutorial for Snapshot Method of Eigenspace Projection

The method outlined above can lead to extremely large covariance matrices. For
example, images of size 64x64 combine to create a data matrix of size 4096xP and a
covariance matrix of size 4096x4096. Thisisa problem because calculating the
covariance matrix and the eigenvectors/eigenvalues of the covariance is computationally
demanding. Itisknown that for a NxM matrix the maximum number of non-zero

eigenvectors the matrix can have is min(N-1,M-1) [6,7,20]. Since the number of training

11



images (P ) isusually less than the number of pixels (N ), the most

eigenvectorgeigenvalues that can be found are P-1.

A common theorem in linear algebra states that the eigenvalues of XX and X" X are
the same. Furthermore, the eigenvectors of XX are the same as the eigenvectors of
XTX multiplied by the matrix X and normalized [6,7,20]. Using this theorem, the
Snapshot method can be used to create the eigenspace from a PxP matrix rather than a
NXN covariance matrix. The following steps should be followed.
1. Center data: (Same as original method)
2. Create data matrix: (Same as origina method)
3. Create covariance matrix: The data matrix’ s transpose is multiplied by the
data matrix to create a covariance matrix.
We=X"X  (10)
4. Computethe eigenvalues and eigenvectorsof OC: The eigenvalues and
corresponding eigenvectors are computed for W,
WV (= Lo/C (11)
5. Computethe eigenvectorsof XX : Multiply the data matrix by the
eigenvectors.
V=XVe (12

Divide the eigenvectors by their norm.

V. =

Y ;@

¢

6. Order eigenvectors: (Same as original method)

12



The following is the same example as used previously, but the eigenspace is cal culated
using the Snapshot method. The same training and test images will be used as shown in
Figure 1. The revised covariance matrix is.

633712 11301 - 33998 - 115015(
£11301 82627 - 50914 - 430144

we=C'C=¢ ’
& 33998 - 50914 70771 14141 U

& 11015 - 43014 14141 39888 |

The ordered eigenvectors and corresponding non-zero eigenval ues of the revised

covariance matrix are;

¢ 02630 605210 & 0.6400
é a e a é a
C 0679 0.437} ©0.314 ¢
V1¢: e u V? Vg:: € u
80,586 U e— 05590 " & 0.3060
€osssd  Soasl  Soeal
|, =153520  |,=50696 |, =22781

The data matrix multiplied by the eigenvectors are:

é139.57340) €124.311 1 & 39.7870
g- 109.1083 2109.9953 € 52380 Y

é u
8187.906 U é-99810 8 46.675 U
é U é U é U
x- 12435 ; a10.777 g 9591

13.699 U ¥, =€ 23655U ¥, =€ 33493U

»~<)
1
> (D> (D> D> (D

u é U é U
3.452 G é 0.781 G §11.725 G
e 219 448 U U g 25.008Y g 88.213 U

u u
& 116 108u 811.715 ¢ & 60.533 ()
€157.503 4 & 97.366 | & 58.978H

Below are the normalized eigenvectors. Note that they are the same elgenvectors that

were calculated using the original method.

13



60356 0 & 05520 & 0.264(
é a e a @ G
§ 0219, g 0489; 0347
804800 €00440U  €0.309 U
e u e u e u
§0032; §004; 0064
v,€00350 v,801050 v,& 0.2220
e u e u e u
60009 & 0004; &0078
€os60Y4  €01124Y  €0585 U
e u e u e u
& 02960 604920  &0401(
04024 & 0432 & 0.391Y

2.3 Variations

Centering the images by subtracting the mean image is one common method of
modifying the original images. Another variant is to subtract the mean of each image
from all of the pixel valuesfor that image [20]. Thisvariation simplifies the correlation
calculation, since the images are already mean subtracted. Y et another variationisto
normalize each image by dividing each pixel value by the norm of the image, so that the
vector has alength of one[20]. Thisvariation simplifies the covariance calculation to a
dot product. An image cannot be both centered and normalized, since these actions
counteract the one another. But an image can be centered and mean subtracted or mean

subtracted and normalized. For al my work, | use only centered images.

14



3. Fisher Discriminants

Fisher discriminants group images of the same class and separates images of different
classes. Images are projected from N-dimensional space (where N is the number of
pixelsin the image) to C-1 dimensional space (where C isthe number of classes of
images). For example, consider two sets of pointsin 2-dimensiona space that are
projected onto asingle line (Figure 2a). Depending on the direction of the line, the points
can either be mixed together (Figure 2b) or separated (Figure 2¢). Fisher discriminants
find the line that best separates the points. To identify atest image, the projected test
image is compared to each projected training image, and the test image is identifed as the

closest training image.

3.1 Fisher Discriminants Tutorial (Original Method)

As with eigenspace projection, training images are projected into a subspace. The test

images are projected into the same subspace and identified using a similarity measure.

What differsis how the subspace is calculated. Following are the stepsto follow to find

the Fisher discriminants for a set of images.

1. Calculatethewithin class scatter matrix: The within class scatter matrix measures
the amount of scatter between items in the same class. For thei™ class, a scatter

matrix (S ) is calculated as the sum of the covariance matrices of the centered images

in that class.

15



Figure2. (a) Pointsin 2-dimensional space. (b) Points mixed when projected onto aline. (c) Points
separ ated when projected onto aline.

S =4 (x- m)(x- m)’ (14)

X X;

where m isthe mean of the imagesin the class. The within class scatter matrix (S, )

is the sum of al the scatter matrices.

s =as (19

i=1
whereC isthe number of classes.

2. Calculate the between class scatter matrix: The between class scatter matrix (S;)

measures the amount of scatter between classes. It is calculated as the sum of the
covariance matrices of the difference between the total mean and the mean of each

class.
Se :é n(m - m(m - m)’ (16)

where n, isthe number of imagesin the class, m isthe mean of theimagesin the

classand m isthe mean of all the images.

16



3. Solvethe generalized eigenvalue problem: Solve for the generalized eigenvectors
(V) and eigenvalues (L ) of the within class and between class scatter matrices.
SV =LS§V (17)

4. Keep first C-l eigenvectors: Sort the eigenvectors by their associated eigenvalues
from high to low and keep thefirst C - 1 eigenvectors. These eigenvectors form the
Fisher basis vectors.

5. Project images onto Fisher basisvectors: Project all the original (i.e. not centered)
images onto the Fisher basis vectors by calculating the dot product of the image with
each of the Fisher basis vectors. The original images are projected onto this line
because these are the points that the line has been created to discriminate, not the

centered images.

Following is an example of calculating the Fisher discriminants for a set of images. Let
the twelve images in Figure 3 be training images. There are two classes; images x* - x°

areinthefirst classand images x’ - x* arein the second class. The training images

viewed asvectors are; =

€90 183y @46y €08y @450 €480
€ag U €154 €4l €16 U €U €nU

é v é—u é - u é—u é~u é " u
@234(1 @236(1 @222(1 @235(1 §213(J @225(1
é..u & u

(S u €, u €, u (S u
2y @My @22 @255, @254 52

x'=€59U x?=€44Ux>=840U x* =€44U x* =€55U x°* =€30U
e u e u e u e u e u e u
4y &80 &%y @90 @520 40
€243u €251u e08Y €36Y €15U €42u
e u e u e u e u e u e u
esra  e48a  é3du  e34a  edlu  ézru
Q26  &30f &34y @47n 249 44y
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Class 1 Class 2

N BEEE WEEN

L
& Hxs
Xy = 1

@550 &340 @320 550 @3 &4y

&0 & U a &, .0 &, 0 81U
223, 25y 255 &241 &243 &251
&40  &050  &310  &080  &370  &150
(S u e u (S u e u (S u (S u
A 55L'J A 51(1 é247l.] é255l:I é237l:I é245l.]
x'=€0Ux*=€0Ux*=€38Ux""=€280x"=€190x"=¢€310
e u e u e u e u e u e u
8255y 82514 246y 8255y 82514 82224,
249U €23gu €904 €oqu 207U €233u
e u e u e u e u e u e u

62550 e2530 e2360 &340 @250 &35
&35  fdof  &s04 &8sy &3y &2544

The scatter matrices are:

€381 059 -109 014 -060 039 -169 -083 0.770
20.59 083 -015 -0.73 005 -0.09 -0.63 0.01 - 0.283
109 -015 042 -0.06 -001 -026 062 0.03 -0230
20.14 -0.72 -006 079 -010 021 028 -0.17 048 3
S =€060 005 -001 -010 055 028 -007 056 -0.13U
20.39 -0.09 -026 021 028 05 -009 028 0.14 3
g— 169 -063 062 028 -007 -009 146 011 - 0.288
&083 001 003 -017 05 028 011 068 -0.260
30.77 -028 -023 048 -013 014 -028 -0.26 0.46 H
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6063 -051 027 008 -064 036 079 017 021y
2-0.51 074 -014 -0.16 045 -034 -0.59 -0.09 0.503
€027 -014 082 -028 025 006 -012 -044 0590
20.08 -016 -028 024 -018 016 -0.01 0.22 -0.413

S,=€064 045 025 -0.18 131 -047 -154 -049 -0.00U
20.36 -034 006 016 -047 079 -0.17 -0.30 -0.843

20.79 -059 -012 -001 -154 -017 294 1.00 1.133

017 -009 -044 022 -049 -030 100 084 056y

30.21 050 059 -041 -000 -084 113 0.56 2.8ZH

The within class scatter matrix is:

¢444 008 -082 022 -123 076 -091 -0.66 0.981
008 157 -029 -088 050 -042 -122 -008 022
8082 -029 124 -034 025 -020 050 -040 0360
£022 -088 -034 103 -029 037 026 006 007
SN=%+SZ=2~1-23 050 025 -029 185 -020 -161 0.07 -0.133
50.76 -042 -020 037 -020 133 -025 -0.02 -0.70y
2-0.91 -122 050 026 -161 -025 440 111 0.858
&066 -008 -040 006 007 -002 111 152 0304
€098 022 036 007 -013 -070 085 030 3284

The mean of each class and the total mean are:

6221.830) 6234.50( 6228.170)
8 U & U 8 U
§26.17 ; ‘(:;’244.67(J (23135.42(J
€227.500 €220.000 €223.750
243,67}, 24833, £246.00(,
m =€45330 m,=€1933U0 m=£€3233U
e u e u e u
236.50(; &246.67(, 824158,
€232.500 €221.830 €207.170
e u e u e u
842.00 &243.00( 8142.50(

€38.33H oo &36.17H
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The between class scatter matrix is:

€0008 0138 -0.005 0003 -0017 0.006 -0.007 0.127 -0.003u
20.138 2387 -0082 0051 -0284 0111 -0117 219 - 0.0473
60005 -0.082 0.003 -0.002 0.010 -0.004 0.004 -0.075 0.002U
20.003 0.051 -0.002 0.001 -0.006 0.002 -0.003 0.047 - 0.0013
S, =€0017 -0.284 0.010 -0.006 0.034 -0.013 0.014 -0.261 0.006U
20.006 0.111 -0.004 0.002 -0.013 0.005 -0.005 0.102 - 0.0023
g— 0.007 -0.117 0.004 -0.003 0.014 -0.005 0.006 -0.107 0.002 3
60127 2196 -0.075 0.047 -0261 0.102 -0.107 2.020 -0.044(
3 0.003 -0.047 0.002 -0.001 0.006 -0.002 0.002 -0.044 0.001 H

Since there are two classes, only one eigenvector is kept. The non-zero eigenvector and

corresponding eigenvalueof SV =1 S,V are:

60.18 ()
énrql
5051 5
80.480
e u
8059
=€ u
W=g004 e = 00145
? 0.12@
€0.08 Y
e u
0.23(
& 0.224

The values of the images projected onto the first eigenvector are shown in Table 1.
Figure 4 shows aplot of the points; clearly illustrating the separation between the two

classes.

3.2 Fisher Discriminants Tutorial (Orthonormal Basis M ethod)
Two problems arise when using Fisher discriminants. First, the matrices needed for

computation are very large, causing slow computation time and possible problems with
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Table 1. The values of theimages projected onto the first eigenvector.

Xl X2 X3 X4 XS X6 X7 X8 X9 XlO Xll X12

Class 1 259| 255 256| 256| 254| 257|Class 2 414] 413| 415] 412 409] 412

1F A

I:I 1 1 1 1 1 1 1 1
240 260 20 300 320 340 360 30 400 420

Figure 4. Plot of theimages projected onto Fisher basis vectors.

numeric precision. Second, since there are fewer training images than pixels, the data
matrix isrank deficient. It is possible to solve the eigenvectors and eigenvalues of arank
deficient matrix by using a generalize singular value decomposition routine, but a
simplier solution exists. A simplier solution is to project the data matrix of training
images into an orthonormal basis of size PxP (where P is the number of training images).
This projection produces a data matrix of full rank that is much smaller and therefore
decreases computation time. The projection aso preserves information so the final
outcome of Fisher discriminantsis not affected. Following are the stepsto follow to find
the Fisher discriminants of a set of images by first projecting the images into any
orthonormal basis.
1. Compute means. Compute the mean of the imagesin each class(m )and the total
mean of all images (m).
2. Center theimagesin each class. Subtract the mean of each class from the imagesin
that class.

I X,x=x-m (18)

21



. Center the class means: Subtract the total mean from the class means.

m=m-m (19)
. Create a data matrix: Combine the al images, side-by-side, into one data matrix.
Find an orthonormal basisfor thisdata matrix: This can be accomplished by
using a QR Orthogonal-triangular decomposition or by calculating the full set of
eigenvectors of the covariance matrix of thetraining data. Let the orthonormal basis
beU .
Project all centered imagesinto the orthonormal basis. Create vectors that are the
dot product of the image and the vectors in the orthonormal basis.

X =U"X (20)
Project the centered meansinto the orthonormal basis:

m =U"r (21)

. Calculatethewithin class scatter matrix: The within class scatter matrix measures

the amount of scatter between items within the same class. For the i™ class a scatter

matrix (S ) is calculated as the sum of the covariance matrices of the projected

centered images for that class.

§=ax' (22)

X X

The within class scatter matrix (S, ) isthe sum of all the scatter matrices.

si=4s @

where C isthe number of classes.
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9. Calculate the between class scatter matrix: The between class scatter matrix (S;)

measures the amount scatter between classes. It is calculated as the sum of the
covariance matrices of the projected centered means of the classes, weighted by the

number of images in each class.

C
S, =a nmm’ (24)

i
i=1

El

where n; isthe number of images in the class.

10. Solve the generalized eigenvalue problem: Solve for the generalized eigenvectors

(V) and eigenvalues (L ) of the within class and between class scatter matrices.
SV =1,V (25)

11. Keep thefirst C-l eigenvectors: Sort the eigenvectors by their associated
eigenvalues from high to low and keep the first C - 1 eigenvectors. These are the
Fisher basis vectors.

12. Project images onto eigenvectors: Project al the rotated origina (i.e. Not centered)
images onto the Fisher basis vectors. First project the origina images into the
orthonormal basis, and then project these projected images onto the Fisher basis
vectors. The original rotated images are projected onto this line because these are the

points that the line has been created to discriminate, not the centered images.

The same example as before will be calculated using the orthonormal basis. Let the

twelve imagesin Figure 3 be training images. The training images viewed as vectors, the

means of each class and the total mean are the same as in the previous example.
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The centered images are:

& 25.83) & 33.830 624.17 \) é13.83()
é a ) a é a ) a
& 8.83 G & 11.179 (?21.83@ & 10.17(J
€ 6.50 U é 850 U é-5500 €750 U
e u e u e u e u
& 11.67(J é 0.33 { §-18.67g §11.33@
X' =€1367Ux* =€-133U%*>=€-533Ux* =€-1.33Ux°> =
e u e u e u e u
e 7.50 u e- 8.50 u e— 10.50@ e- 7.50 u
€10.50 U €18.50 Y € 24 504 €350 U
e u e u e u e u
815.00 (4 & 6.00 &8-7.00( 8-8.00(
§1233H  &-833d  §-433¢ &se7 H
€20.50 U é-0.500 é-2500 é-9.50 U
e u e u e u e u
é 400 U é-15.000 €11.00 G 12,000
e u e u e u e u
e 6.67 l;l e 2.67 l.:J §-1.33g e 6.67 l;l
X" =€.19.33U%® =€19.33U%° = €18.67 UX® =€ 867 UX" =
e u e u e u e u
§ 8.33 u § 4.33 u (:3-0.67@ § 8.33 u
eo717U €16.17 Y € 31.83U € 27.834
e u e u e u e u
812.00 ¢ 810.00 8-7.00( 6-9.00 ¢
§1004 §&eoo{d &16.00Y & 46.00}
The centered class means are:

é-633 U €633 U

e u u

& 109.25(J ‘53109.25(J

& 375 U é-3.750

e u e u

§-2.33 G §2.33 G

m =€1300 U m,=€1300U

e u e u

e -5.08 u e 5.08 u

€ 533 U €.533U

e u e u

&100.50 6100.50

& 217 Y §-2174
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623.17 () 626.17 ()
é 4 é 0
& 5.17 G & 4.17 G
&-14.50( é-25010
e u e u
§10.33@ & 8.33 G
€967 Ux® =€1533U
e u e u
@15.50@ e 3.50 u
€ 17.50uU €950 U
e u e u
€9.00 ¢ &15.004
§10674  &567 {
é 250 ¢-10.500
e u e u
5167 g 633 4
€17.00 ( é-5.00 0
e u e u
e— 11.33(J e- 3.33 l.:J
€.0.33Ux* =€11.67 U
e u e u
e 4.33 u e— 24.67@
€517 U €11.17 U
e u e u
&18.00 612.00
&€3.00 Y &20.00



The orthonormal basis calculated by eigenspace projection is:

¢0.35 0.80
§025 -0.09
013 -013
£007 0.1
€022 -039
£009 012
o081 017
6024 -0.05
€017 036

-0.05
0.34
0.16

-0.21
0.25

-0.38

-0.08
0.05
0.77

The centered images projected into the orthonormal basis are:

613.07 U
é U
& 31.39;
€-1.150
e u
& 11.44(J
€ 331 uUx® =

627.791
Y
£31.50
818.05(
e u
a117

é31.66 U
é v
& 27.65,
€-5320
e u
& 4.50 ¥
€114 Ux® =
e u
& 4.91 u
€-1934
e u
8-3.89(
&201 Y

¢16.17 0
€12 og U
£13.28
€-2.160
€ u
& 20.17;,

e u
e 4.06 u
€1482 U
e u
&-1.94 ¢
€077 Y

€ 6.27 UX®° =

-003 007 -016 -038 014 -0.21
-039 044 -0.09 045 013 - 0.503
061 013 -042 -015 -0.37 -0.460
010 -055 044 025 0.02 -0.613
001 -041 -026 -033 061 -0.12u
u
001 -027 -066 055 006 0.14y
-0.06 021 -012 -0.02 048 -0.133
-0.67 -0.30 -0.28 -0.30 -0.46 -0.16(
010 -032 -001 027 -006 0.24Y
é35.920 612.471) é 21.620 €0.34 1
e u e u e u u
21131y 56047 32047 233.29(J
€ 9.95 U é4.710 é-0.890 & 7.310
e u (S} u e u e u
@- 8.87 l;I §15.99L:J @- 10'14@ @9.96 l.:J
€24.40UX* = €-7.86UX°> =€ 26.120x° = €512 U
e u e u e u e u
(:3 1.89 u @11.87@ (:5- 575 u (:35.54 u
€.571U €336 U €.0.62U €335U
e u e u e u e u
8-4.29 &-2.214 6162 66.10
§o52 8  &o47d  &o2s8lH  &2504
6 29.040 32090 é1.07 616.12 ()
é a e a é a é 0
& 11.15(J & 28.19g & 2.14 d & 7.59(J
é25170G é&38760 é368 10 €30.110
e u e u e u e u
§11.21 G §-1.89 G §22.01l:J §h12.33l:J
€.10.62Ux"°€-1.66 UXx"€12.41 UX* =€-2.63U
e u e u e u e u
e 4.35 u @ 8.19 v §-10.83@ a10.26
€415 Y €.2020U €144U €.8.96U
e u e u e u
6-48231 62030 @430 8559 (|
§-1984 &-033H &299 4 &-0.18H
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The centered means projected into the orthonormal basis are:

¢ 7.87 0 &-7.87 U
85.153 3-5.153
8-33.760 € 33.76 U
£111.83; 5111.83
m =€20010 m,=€2001U
£34.87 ] 5-34.87 ]
g 25.063 g 25.06 3
840.03 &-40.03
€e8.83 Y §-68.83Y
The within class scatter matrix is:
625 0 0 0 0O 0 0 0 00U
0 559 0 0 0O O 0 0 0
€0 0 35 0 0 0 0 0 o0u
€0 0 0 18 0O 0 0O 0 0y
swzgo 0O 0O 0 171 0 0 © 08
a0 0O O O 0 095 0 0 0y
20000000.47008
80 0O O O O O 0 019 04y
€0 0o o 0o o 0o o o oo

Notice that the within class scatter matrix is a diagonal matrix and the values along the
diagonal are the eigenvalues associated with the eigenvectors used to create the
orthonormal basis. This occurs because the images are projected into this orthonormal
basis before calculating the within class scatter matrix. Therefore each projected imageis

orthogonal to all other projected images.

The between class scatter matrix is:
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€001 001 -005 018 -003 005 -004 006 011G
g0.0l 000 -003 012 -002 004 -0.03 0.04 007 3
6005 -003 023 -076 014 -024 017 -0.27 -047U
20.18 012 -0.76 250 -045 078 -056 090 154 3
S, =€003 -002 014 -045 008 -0.14 010 -0.16 -0.28U
20.05 004 -024 0/8 -014 024 -017 028 048 3
2— 004 -003 017 -056 010 -017 013 -020 - 0.358
006 004 -027 090 -016 028 -020 032 0550
30.11 007 -047 154 -028 048 -035 055 095 H

Since there are two classes, only one eigenvector is kept. The non-zero eigenvector and
corresponding eigenvalueof SV =1 S,V are:

¢0.0007 0
é a
50.0005
& 0.00500
e u
eo.oszz (
v, = €0.0063U | | =291.4492
e u
§0.0196 u
€ 0.0283Y
e u
60.1113
£0.9926 |

The values of the rotated images projected onto the first eigenvector are shown in Table

2. Figure 5 shows aplot of the points; you can clearly see the separation between the two

classes.
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Table 2. The values of theimages projected onto the first eigenvector.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Class 1 | -259| -255| -256| -256| -254| -257|Class 2 | -414| -413| -415| -412| -409| -412

1 e .

I:I 1 1 1 1 1 1 1 1
-420 0 -4000 -330 -360 340 5200 300 2800 2RO 240

Figure5. Plot of theimages projected onto Fisher basis vectors.
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4. Variations

4.1 Eigenvector Selection

Until this point, when creating a subspace using eigenspace projection we use all
eigenvectors associated with non-zero eigenvalues. The computation time of eigenspace
projection is directly proportional to the number of eigenvectors used to create the
eigenspace. Therefore by removing some portion of the eigenvectors computation timeis
decrease. Furthermore, by removing additional eigenvectors that do not contribute to the
classification of the image, performance can be improved. Many variations of
eigenvector selection have been considered; | will discuss five. These may be applied

either alone or as part of Fisher discriminants.

1. Standard eigenspace projection: All eigenvectors corresponding to non-zero
eigenvalues are used to create the subspace.

2. Removethelast 40% of the eigenvectors. Since the eigenvectors are sorted by the
corresponding descending eigenvalues, this method removes the eigenvectors that
find the least amount of variance among the images. Specifically, 40% of the
eigenvectors that find the least amount of variance are removed [10].

3. Energy dimension: Rather than use a standard cutoff for all subspaces, this method

uses the minimum number of eigenvectors to guarantee that energy (e) is greater than
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athreshold. A typical threshold is0.9. The energy of thei eigenvector isthe ratio of

the sum of thefirst i eigenvalues over the sum of all the eigenvalues[7]

. mo_.

1
-

(30)

D
I

1
-

4. Stretching dimension: Another method of selecting eigenvectors based on the
information provided by the eigenvaluesisto calculate the stretch (s) of an

eigenvector. The stretch of thei™ eigenvector is the ratio of the ™ eigenvalue (| )

over the maximum eigenvalue (1 ;) [7]. A common threshold for the stretching

dimension is 0.01.

s=t @

l 1
5. Removing thefirst eigenvector: The previous three methods assume that the
information in the last eigenvectors work against classification. This method assumes
that information in the first eigenvector works against classification. For example,
lighting causes considerable variation in otherwise identical images. Hence, this
method removes the first eigenvector [10].

Figure 6 shows the values for energy and stretching on the FERET dataset.

4.2 Ordering Eigenvectors by Like-Image Difference
Idedlly, two images of the same person should project to the same point in eigenspace.
Any difference between the points is unwanted variation. On the other hand, two images

of different subjects should project to points that are as widely separated as possible. To
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e:gg 15% @92 09% &97.50%  &=100.00%
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800 o \s=0.01426 0.00351 000123 s=0.00000
0,
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0,
700 &67.71% 002738
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2
@ 600 =0.05055
o
o 6=55.42%
B 500 \\
S / $=0.11031
3 400
g /
E
300
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200 | EE42.76%
100
0
5 10 20 30 40 50 75 100 150 200 300 400 500

Number of Eigenvectors

Figure 6. Example of Energy () and Stretching (s) dimension of a specific dataset.

capture thisintuition and use it to order eigenvectors, we define alike-image difference

(w) for each of the k eigenvectors[22].

To define w, we will work with pairs of images of the same people projected into
eigenspace. Let X betraining imagesand Y images of the corresponding peoplein the

test set ordered such that x; T X and y, T Y areimages of the same person. Define w

asfollows:

W.

k
lzfl—iwhered:é‘xj-yj‘ (28)

i j=1
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When a difference between images that ought to match is large relative to the variance
for thedimension |, then w, islarge. Conversely, when the difference between images
that ought to match is small relative to the variance, w, issmall. Since the goal isto

select eigenvectors that bring similar images close to each other, we rank the eigenvectors

in order of ascending w; and remove some number of the last eigenvectors.

4.3 Similarity & Distance Measures

Once images are projected into a subspace, there is the task of determining which images
are most like one another. There are two waysin general to determine how alike images
are. Oneisto measure the distance between the images in N-dimensional space. The
second way isto measure how similar two images are. When measuring distance, one
wishes to minimize distance, so two images that are alike produce a small distance.
When measuring similarity, one wishes to maximize similarity, so that two like images
produce a high similarity value. There are many possible similarity and distance

measures; | will discuss five.

L, norm: The L, norm is aso known asthe city block norm or the sum norm. It sums

up the absolute difference between pixelg[6,10]. The L, norm of animage A and an

image B is:
J
L(AB)=alA - B| (29)
i=1

The L, normisadistance measure. Figure 7 showsthe L, distance between two

Vectors.
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L, norm: The L, norm isaso known as the Euclidean norm or the Euclidean distance

when its square root is calculated. It sums up the squared difference between pixels
[6,10,17]. The L, norm of animage A and animage B is:
N 2
[o]
L,(AB)=a (A-B) (30)
i=1
The L, normis adistance measure. Figure 7 showsthe L, distance between two

Vectors.

Covariance: Covarianceis aso known as the angle measure. It calculates the angle
between two normalized vectors. Taking the dot product of the normalized vectors

performsthis calculation [10,17]. The covariance betweenimages A and B is:

cov(A, B) = (31)

A B
IAl (8]
Covariance isasimilarity measure. By negating the covariance value, it becomes a

distance measure [10]. Figure 7 shows the covariance between two vectors.

Mahalanobis distance: The Mahalanobis distance cal culates the product of the pixels
and the eigenvalue of a specific dimension and sums all these products[10]. The

Mahalanobis distance between an image A and animage B is:

Mah(A, B) = -§N1 ABC (32

i=1
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L1 cestonce
._ -

L2 dishance

Covmionce

Figure7. L1 distance, L2 distance and

covariance between two vectors

Mahalanobis distance is a distance measure.

Correlation: Correlation measures the rate of change between the pixels of two images.

where C, =

1
v

Image &

Image B

corf4,B]=-0.98

Image &

Image B

corf&, B] =099

Figure 8. Two images with a negative
correlation and two that correlate well

(33)

It produces a value ranging from —1 to 1, where a value of —1 indicates the images are

opposites of each other and avalue of 1 indicates that the images areidentical [17]. The

correlation between animage A and animage B is:

corr (A, B) :g (A-

mA)(Bi - ms)

SaSs

(34)

where m, isthemean of A and s , isthe standard deviation of A. Figure 8 shows an

example of two images with a negative correlation and two that correlate well.

34




4.4 Are Similarity M easur es the Same I nside and Outside of Eigenspace?

An eigenspace consisting of all eigenvectors associated with non-zero eigenvaluesisan
orthonormal basis. An orthonormal basisis a set of vectors where the dot product of any
two distinct vectorsis zero and the length of every vector isone. Orthonormal bases
have the property that any image that was used to create the orthonormal basis can be
projected into the full orthonormal basis with no loss of information. This means that the
image can be projected into the orthonormal basis and then converted back to the original
image. For example, let U be an orthonormal basisand let A be an image used to create
U. Then A¢=UTA, where At istheimage A projectedinto U . A can be recovered

by multiplying by U , A=UAC

Given the fact that no information islost when projecting specific imagesinto an
orthonormal basis, do the values of the similarity measures change? The answer isthat it
depends on the similarity measure. The L, norm and correlation produce different values
in the two spaces. Mahalanobis distanceistypically only used in conjunction with
eigenspace. The L, norm and covariance do produce the same value in both spaces; |

will provethis.

Theorem 4.1: The L, norm produces the same value on a pair of unprojected vectors
and on apair of projected vectors.

L,(AB)=L,(UTAUTB) (35)
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Proof: Let U be an orthonormal basis. Let A beavector suchthat AC=U"A. Let B be
avector suchthat B¢=U"B. Now the L, normof A- B isdefined in equation (30) and
isthesame as:

(A- B)'(A- B) (36)

The L, norm of (A(- B() isdefined as:
2

L,(ASBY = § (AC BY = (AC BYT(AC BY

i=1

= A¢ AC ACB¢ BE A¢- BEBC
=UTATUTA-UTA"U™B)- UTB)"(UTA- U'B)"(UTB)
=ATUUTA- AlUU'B- B'UUTA- B'UU'B
=A"A- A'TB- B'"A- B'B

N 2
=(A-B)"(A-B)=a (A-B) =L,(AB)

i=1

Hence, the L, norm produces the same value on unprojected vectors and on projected

Vectors.

Theorem 4.2: Covariance produces the same value on a pair of unprojected vectors and

on apair of projected vectors.

cov(A, B) =cov(U " AU "B) (37)
Proof: Let U be an orthonormal basis. Let A be avector suchthat A¢=UTA and
A=UAC( Let B beavector suchthat B¢=U "B and B =UB(. The covariance of A and

B isdefined in equation (31) and the covariance of At and B¢ is defined as:

At B¢_ At B¢_ (UTA) B¢ _ (UTA'BE _  ATUBC

A I8¢ ades JuTAluTe] JuTAluTe] uTAluTE]

Itisknownthat B =UBC(, so

cov(A¢BY = (38)
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_ A'B
BRNSNTE T B

By theorem 4.1 |A| =[UT A| =[A¢ and |B|=|U"B|=|B¢. o,

cov(A¢BQ = = cov(A, B) (41)

A'B
| AllE]
Hence, covariance produces the same value on unprojected vectors and on projected

Vectors.

I will illustrate how each measure behaves with an example. Consider two vectors,
du
A=g51B = 5. Project these two pointsinto the orthonormal basis
e &
¢0.7033 - 0.6594 0.2659 u

U= 20.6189 0.3837 - 0.68548.
€0.3499 0.6465 0.6779 {

€0.7033 - 0.6594 0.2659 uélu €é5.1973 1

rA

AC=UTA= 20.6189 03837 - 06854550 = 23.8453 3
£0.3409 06465 0.6779 GEAH @ 0.44974

€0.7033 - 0.6594 0.2659 (&70 ¢ 8.7169
Bt=UTB = 20.6189 0.3837 - 0.68540%53: 2-1.40403
0.3499 06465 0.6779 {2 §-0.2103f

Figure 9 shows points A, B, Atand B¢.

L, norm: The L, norm produces the same value on unprojected vectors and on

projected vectors. Examine the example.
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+B

Figure9. Plot of pointsA, B, A’ and B’.

The L, normof A- B is:

L,(A- B) = éz (A- B =(1-7)* +(5-5)" +(4- 2)°

=36+0+4=40

The L, normof A(- BCis:

L,(A¢ B9 :512 (A¢- BY® =(5.1973-8.7169) +(3.8453- (-1.4040))° + ((- 0.4497)- (- 0.2103))°

=12.3876+ 27.5552 + 0.0573=40.0

This example shows that for this specific case they are the same, and the above proof

coversthe general case.
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Covariance: Covariance produces the same value on unprojected vectors and on
projected vectors. Examine the same example.

The covariance between A and Bis:

elu é/a el éru

0 &0 &0 &
eu gf’u & é%u €0.1543() &0.79261)
covap)= A . B -8 EH_ @4H EH _ 877150, S0.5661!
(A 18] 1 7 " edeor sezs &' G

5 £0.6172§ g).zzesg

€0.79260)
=[01543 07715 0.6172]§0.5661;= 0.6989
£0.2265(

The covariance between Atand B(is;

€5.1973 1 €8.71690 51973 0 68.7169 §
¢ £ 3.8453 u e-1.40403 23.8453 3 2-1.40403
AC B¢ g 04497g 8021034 §-0.4497 § 0.21034

CoV(ATEY = |Ad [Bd [ 5.1973] [8.7169] = 6.4807 88318
3.8453 | |[-1.4040
-0.4497| [-0.210
¢0.8020 i1 £0.9870 i €0.9870
= 505933 ;- £0.1590,=[0.8020 05933 -0.0694]5 0.1590; = 0.6989
6 0.0694§ & 0.0238f & 0.0238y

This example shows that for this specific case they are the same and the above proof

covers the general case.

L, norm: The L, norm does not produce the same value on unprojected vectors and on

projected vectors. Intuitively, two points that are located diagonal to each other will
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produce alarger L, distance than the same points rotated to be horizontal to each other.

This can be proven by an example.

The L, normof A- B s
8

L(A-B)=a|A - B|=[1- 7|+[5- §+|4- 2 =6+0+2=8
i=1

The L, normof A(- BCis:

L(Ac B9 =§ |A¢- B

=[5.1973-8.7169 +|3.8453- (-1.4040)| +(-0.4497) - (-0.2103)|
= 35197 +5.2493+ 0.2393 = 9.0083

Asyou can see, these two norms are not the same; hence the L, norm does not produce

the same value on unprojected vectors and on projected vectors.

Correlation: Correlation does not produce the same value on unprojected vectors and on
projected vectors. Intuitively, Correlation is effected by the mean of theimages. As
images are rotated their mean changes, therefore their correlation changes. This can be
proven by an example.

The correlation between A and B is:

m, =3.3333, m; =4.6667, s , =2.0817, s ; =2.5166
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corr (A B) =é’N1 (A-m)(B - m)
i=1 SaSs
(L- 3.3333)(7- 4.6667) , (5- 3.3333)(5- 4.6667) , (4- 3.3333)(2- 4.6667)
2.0817* 2.5166 2.0817* 2.5166 2.0817* 2.5166
(- 2.3333)* 2.3333+1.6667 * 0.3333+ 0.6667 * -2.6667
2.0817* 2.5166
_ -5.4444+0.5556 +-1.7778 _ -6.6667 _

=-1.2726
5.2387 5.2387

The correlation between AC and B( is;

Mye = 2.8643, My, = 2.3675,S ,, = 2.9485S ,, = 55310

COI‘I‘(A¢B(9 :éN (A(' rrA¢)(Bi(' rrB¢) -
i=1 S A® B¢
(5.1973-2.8643)(8.7169- 2.3675) , (3.8453- 2.864)(-1.4040 - 2.3675)
2.9485* 5.5310 2.9485* 55310
, (10,4497 - 2.8643)(- 0.2103- 2.3675)
2.9485* 5.5310
| 2.3330* 6.3494 +0.9810* (- 3.7715) + (- 3.3140)* -2.5779
- 2.9485* 5.5310
_ 14.8128+-3.6998 + 8.5429
- 16.3082
_ 196559 _, ,oco

" 16.3082

These two correlations are not the same; hence the correlation does not produce the same

value on an unprojected vector and on a projected vector.

M ahalanobis distance: Typically the Mahaanobis distance is calculated on vectors
projected into eigenspace, since it uses the eigenvalues to weight the contribution along
each axis. Toillustrate Mahaanobis distance as measured in eigenspace, | will calculate
the Mahalanobis distance between the projected vectors At and BC.

1 1

1
C. = = = =0.
t I, /1532345 12.3788

0808
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1 1 1

C,=——-= = =0.1976
? I, J25609 5.0606
= 1 o301

1
C.= = = =
I, 11559 10751

Mah(AGBY = - & ABE

=-(5.1973*8.7169* 0.0808) + (3.8453* -1.4040* 0.1976) + (-0.4497* -0.2103* 0.9301)

= - 3.6606 + (- 1.0668) + 0.0880 = - 2.6818
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5. Experiments

| performed four experiments, each on one of two datasets. The first experiment
combines similarity measures in an attempt to improve performance. The second
experiment tests whether performance improves when eigenvectors are ordered by like-
image difference in eigenspace projection. The third experiment compares many
variations of eigenspace projection and Fisher discriminants on the Cat & Dog dataset.
The fourth experiment compares several variations of eigenspace projection and Fisher

discriminants on the FERET dataset.

5.1 Datasets
The Cat & Dog dataset and the FERET dataset are used for the experiments. The FERET

dataset is restructured for some of the experiments.

5.1.1 The Cat & Dog Dataset

The Cat & Dog dataset was created by Mark Stevens and is available through the
Computer Vision group at Colorado State University. The original dataset of 100, 64x64
pixel, grayscale images consisted of 50 cat images and 50 golden retriever images. |
collected 50 additional cat images and 50 additional images of different types of dogs.
Each image shows the animal’ s head and is taken directly facing the animal’ s face.
Figure 10 shows example images from the Cat & Dog dataset. Thisis a 2-class

classification problem, since each of the test imagesis either acat or adog.
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FigUre 10. Samleimag&from the Cat & Dog
dataset =3 o . -
Figure 11. Sample images from the FERET
dataset

5.1.2 The FERET Dataset
Jonathan Phillips at the National Institute of Standards and Technology made the FERET
dataset available to our department [10,12,13]. The FERET database contains images of
1196 individuals, with up to 5 different images captured for each individual. The images
are separated into two sets: gallery images and probesimages. Gallery images are
images with known labels, while probe images are matched to gallery images for
identification. The database is broken into four categories:
FB: Two images were taken of an individual, one after the other. One image s of the
individual with aneutral facial expression, while the other is of the individua with a
different expression. One of the imagesis placed into the gallery file while the other is
used as aprobe. In thiscategory, the gallery contains 1196 images, and the probe set

has 1195 images.



Duplicate I: The only restriction of this category is that the gallery and probe images
are different. The images could have been taken on the same day or 1 Y2 years apart.
In this category, the gallery consists of the same 1196 images as the FB gallery while
the probe set contains 722 images.

fc: Imagesin the probe set are taken with a different camera and under different
lighting than the images in the gallery set. The gallery contains the same 1196 images
asthe FB & Duplicate | galleries, while the probe set contains 194 images.
Duplicatel1: Imagesin the probe set were taken at least 1 year after the imagesin the
galery. The gallery contains 864 images, while the probe set has 234 images.

Figure 11 shows example images from the FERET dataset.

5.1.3 The Restructured FERET Dataset

| restructured a portion of the FERET dataset so that there are four images for each of
160 individuals. Two of the pictures are taken on the same day, where one picture is of
the individual with aneutral facial expression and the other is with a different expression.
The other two pictures are taken on a different day with the same characteristics. The
purpose of thisrestructuring isto create a dataset with more than one training image of

each individual to allow testing of Fisher discriminants.

5.2 Bagging and Combining Similarity Measures

Different similarity measures have been discussed, but up until this point they have been

examined separately. | will now examine combining some of the similarity measures
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together in the hopes of improving performance. The following four similarity measures
are examined: L, norm (29), the L, norm (30), covariance (31), and the Mahalanobis

distance (32). 1 test both simple combinations of the distance measures and “ bagging”

the results of two or more measures using a voting scheme [2,3,9].

1 5.2.1 Adding Distance Measures
A simple way to combine distance measures isto add them. In other words, the distance
between two images is defined as the sum S of the distances according to two or more
traditional measures:

S(a,,...,a,) =a +...+a, (41)
Using S al combinations of base metrics(L,, L,, covariance, Mahalonobis) are used to
select the nearest gallery image to each probe image. The percentage of images correctly
recognized using each combination on the Duplicate | probe set, is shown in Table 5,
along with the recognition rates for the base measures themselves. Of the four base
measures, there appears to be a significant improvement with the Mahalanobis distance.
On the surface, 42% seems much better than 33%, 34% or 35%. The best performance of
any combined measure is 43% for the S L,, Mahalanobis) and S L, ,covariance,

Mahalanobis) combinations. While higher, the difference does not appear significant.

| used McNemar’ s test, which simplifiesto the sign test [22,24], to calculate the
significance of differencesin theseresults. The McNemar’ stest calculates how often one
algorithm succeeds while the other algorithm fails. | formulated the following

hypotheses to test significant difference in the previous results.
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Table 3. Resultsof McNemar’'stest among base measures.

Algorithms 1] Algorithm 2| Success/Success|Success/Failure]Failure/Success P<

L1 L2 219 34 20 0.038
L1 Angle 214 39 32 0.238
L1 Mahalanobis 220 33 85 0.00001
L2 Angle 224 15 22 0.162
L2 Mahalanobis 214 25 91 0.00001
Angle Mahalanobis 225 21 80 0.00001

Table 4. Results of McNemar’stest of the S( L, Mahalanobis) and S( L, ,covariance, Mahalanobis)
combinations compar ed to the M ahalanabis distance

Algorithms 1 Algorithm 2 Success/Success|Success/Failure|Failure/Success| P<
Mahalanobis | S(L;+Mahalanobis) 282 23 26| 0.388
Mahalanobis |S (L1, Ang, Mah) 280 25 29| 0.342

1. Of the four base measures, Mahal anobis distance outperforms all others, 42% versus
33%, 34% or 35%.
2. The performance of any combined measures is not statistically better than the

performance of the base measures. 43% for the § L,, Mahalanobis) and

S L, ,covariance, Mahalanobis) combinations versus 42% for Mahalanobis distance.

Table 3 shows the results of McNemar’ stest performed for each pair of base measures.
Note that Mahalanobis distance always fails less often than the other similarity measures,

indicated by P < 0.00001. Y et, no other measure is found to be different.

Table 4 shows the results of McNemar’ s test of the (L, , Mahalanobis) and
S L, ,covariance, Mahalanobis) combinations compared to the Mahalanobis distance.

Here no significant difference is found between these algorithms, indicating that when

they do differ on a particular image each is equally likely to identify the image correctly.
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Table 5. Results of adding similarity measures Table 6. Results of bagging similarity

— measur es
Classifier Duplicate |
L1 0.35 Classifier Dup | FB
L2 0.33 L1 0.35 0.77
Covariance 0.34 L2 0.33 0.72
Mahalanobis 0.42 I\C/Ig\rll 8-2‘2‘ 8-;2
Syl 0.35 Bagging 0.37 0.75
S (L4, Covariance) 0.39 Bagging (best 5) 0.38 0.78
S (L, Mahalanobis) 0.43 Bagging (Weighted) 0.38 0.77
S (L,, Covariance) 0.33
S (L,, Mahalanobis) 042
S (Angle, Covariance) 0.42
S (L,, L,, Covariance) 0.35
S (L1, L2, Mahalanobis) 0.42
S(L1, Cov, Mah) 0.43
S (L2, Cov, Mah) 0.42
S(L1, L2,Cov, Mah) 0.42

Interestingly, the performance of the combined measuresis never less than the
performance of their components evaluated separately. For example, the performance of

SL,, L,) is35%; thisis better than the performance of L, (33%) and the sameas L,
(35%). Theseresultssuggest that L, and L, areidentifying the same images correctly;

hence combining measures does not identify any additional images correctly.

5.2.2 Distance M easur e Aggregation

The experiment above tested only a simple summation of distance measures; one can
imagine many weighting schemes for combining distance measures that might
outperform simple summation. Rather than search the space of possible distance measure
combinations, however, | took a cue from recent work in machine learning that suggests
the best way to combine multiple estimators is to apply each estimator independently and

combine the results by voting [2,3,9].
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For face recognition, thisimplies that each distance measure is allowed to vote for the
image that it believesis the closest match for aprobe. The image with the most votesis
chosen as the matching gallery image. Voting is performed three different ways.
Bagging: Each classifier is given one vote as explained above.

Bagging, best of 5: Each classifier votes for the five gallery images that most closely
match the probe image.

Bagging, weighted: Classifiers cast five votes for the closest gallery image, four votes
for the second closest gallery image, and so on, casting just one vote for the fifth closest

image.

Table 6 shows the performance of voting for the Duplicate | and FB probe sets. On the
Duplicate | data, Mahalanobis distance alone does better than any of the bagged
classifiers: 42% versus 37% and 38%. On the ssimpler FB probe set, the best performance
for a separate classifier is 77% (for L,), and the best performance for the bagged
classifiersis 78%. The McNemar’ stest confirms that thisis not a significant
improvement. In the next section, | explore one possible explanation for thislack of

improvement when using bagging.

2 5.2.3 Correlating Distance Metrics
Asdescribed in [2], the failure of voting to improve performance suggests that the four
distance measures share the same bias. To test thistheory, | correlate the distances

calculated by the four measures over the Duplicate | probe set. Since each measureis
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defined over adifferent range, Spearman rank correlation is used [14]. For each probe
image, the gallery images are ranked by increasing distance to the probe. Thisisdone for
each pair of distance measures. The result istwo rank vectors, one for each distance
measure. Spearman’s Rank Correlation is the correlation coefficient for these two

VecCtors.

Table 7 shows the average correlation scores. L, , covariance and Mahalanobis all
correlate very closely to each other, although L, correlates less well to covariance and
Mahalanobis. This suggests that there might be some advantage to combining L, with
covariance or Mahalanobis, but that no combination of L,, covariance or Mahaanobisis
very promising. Thisis consistent with the scoresin Table 5, which show that the
combinations § L,, covariance) and § L,, Mahalanobis) outperform these classifiers

individually.

| al'so constructed alist of imagesin the FB probe set that were grossly misclassified, in
the sense that the matching gallery image is not one of the ten closest images according to
one or more distance measures. A total of 179 images are poorly identified by at |east

one distance measure.

Table 8 shows the number of images that are poorly identified by all four distance
measures, three distance measures, two distance measures, and just one distance measure.
This table shows that there is shared bias among the classifiers, in that they seem to make

gross mistakes on the same images. On the other hand, the errors do not overlap
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Table 8. Number of images similarly

Table 7. Correlation between similarity identified poorly

measur es.

- 1 > oV Mah Images commonly | # of images %

L1 1l 046057 0.38873| 038749 poorlly identifed out of 179 | images
L2 | 0.46057 1] 0.615479] 0.498865 e o
cov | 0.38873| 0.615479 1| 0.582534 by 2 classifiers 34 18.99
Mah | 0.38749] 0.498865| 0.582534 1 by 1 classifier 51 28.29

completely, suggesting that some improvement might still be achieved by some

combination of these distance measures.

5.3 Like-lmage Difference on the FERET dataset

In order to test the performance of like-image ordering of eigenvectors compared to
ordering by corresponding eigenvalue, | performed two experiments. The first
experiment is on the origina FERET dataset and compares results to those of Moon &
Phillips. The second experiment is on the restructured dataset, where 10 trials are run

and training/test datais clearly separated.

For each of the 1195 probe/gallery matches in the FB probe set of the origina FERET
dataset, | calculate the difference between the probe and gallery image in eigenspace.
These differences are summed together and then divided by the eigenvalue to calculate
the like-image difference. The smaller this number is, the better the eigenvector should
be at matching images. Thetop N eigenvalues are selected according to the like-image

difference measure, and the FB probe set is reevaluated using the L, norm. Figure 12

shows the performance scores of the reordered eigenvalues compared to the performance

of the eigenvalues ordered by eigenvalue, as performed by Moon & Phillips. Table 9

shows the number of images correctly identified by each ordering method and the results
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Figure 12. Graph of the performance when ordering by eigenvalues vs. when or dered by like-image

difference
Table 9. Correctly identified images by ordering of eigenvectors by eigenvalue and by like-image
difference.
L1 L1 Sorted by
Sorted | Like-Image
# Evs | by Evs Diff. S/S S/IF FIS P<
5 273 308 203 70 105 | 0.0050
10 523 550 472 51 78 0.0109
20 687 720 659 28 61 | 0.0003
30 765 787 748 17 39 0.0023
40 821 825 796 25 29 ] 0.3417
50 850 856 839 11 17 0.1725
75 898 905 886 12 19 | 0.1405
100 916 909 903 13 6 0.0835
150 930 931 925 5 6 0.5000
200 923 929 921 2 8 0.0547
300 915 916 913 2 3 0.5000
400 915 917 912 3 5 0.3633
500 913 913 913 0 0 1.0000
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of McNemar’ stest on the results. Note that for less than 40 eigenvectors McNemar’ s test
indicates that like-image difference ordering of eigenvectors fails less than eigenvectors

ordered by corresponding eigenvalue.

Reordering by the like-image difference improves performance for small numbers of
eigenvectors (up to thefirst 40). This suggests that the like-image distance measure
should be used when selecting only afew eigenvectors. When more than 40 eigenvectors
are selected, there is enough overlap between the two orderings that no significant

difference in performance occurs; either method of ordering eigenvectors can be used.

To further test the performance of like-image difference, | ran an experiment on the
restructured FERET dataset. For this experiment, 10 trials are run with each of four
algorithms (eigenspace projection using L, norm, L, norm, covariance and Mahalanobis
distance), but the training and test images are selected randomly. For each individual,
two images taken on the same day are randomly selected for training data. One image of
the remaining two images, of the final 140 individuals, is randomly selected as test

data. Only 140 images are used as test data because the like-image difference algorithm
requires 20 additional training images. Therefore, in each trial 320 training images and
140 test images are used. | tested eigenspace projection by removing the last 40% of the
eigenvectors and by reordering the eigenvectors by like-image difference and then
removing the last 40%. Table 10 shows the results of these tests. The results of these
tests do not show an improvement through the reordering of eigenvectors by like-image
difference. Thus, like-image difference ordering of eigenvectors does not improve

performance.
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Table 10. Results of ordering eigenvectors ordering eigenvector s by eigenvalue vs. by like-image
difference.

Remove Last 40% (127) of the Reorder by Significant Difference and
Eigenvectors remove last 40% (127) of the Eigenvectors
Trial # L1 L2 Angle [Mahalanobis L1 L2 Angle Mahalanobis
1 69 59 67 89 68 63 65 85
2 70 61 62 82 68 60 62 83
3 76 54 71 89 76 59 70 86
4 73 53 67 83 71 61 66 84
5 71 62 58 83 70 54 59 84
6 72 50 61 89 67 64 61 79
7 75 55 66 91 72 63 66 85
8 67 61 61 91 69 53 61 83
9 71 59 60 86 72 56 59 79
10 73 63 66 92 73 61 66 86
Average 71.7 57.7 63.9 87.5 70.6 59.4 63.5 83.4

5.4 Cat & Dog Experiments

Two hypotheses prompted experiments on the Cat & Dog dataset. Thefirst hypothesisis
that Fisher discriminants will perform better than eigenspace projection. | believed that
since the Cat & Dog dataset is atwo-class problem that classifies an image as either a cat
or adog, Fisher discriminants will clearly separate the two classes. The second
hypothesis is that the combination of eigenspace projection and Fisher discriminants will
outperform all other algorithms. By testing multiple variations of the eigenspace
projection and combination eigenspace projection/Fisher discriminants algorithms, |
introduce athird hypothesis that for each of these algorithms one of the variations will

perform better than the others.

The tests on the Cat & Dog data are set up according to an approach described by
Salzberg [15]. The 200 cat and dog images are separated into 10 datasets. Each dataset
contains 10 cat images and 10 dog images. A singletrial istrained on nine of the datasets

and tested with the remaining dataset. Therefore, ten trials are run on each algorithm,
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using each dataset as the test dataset once. Table 11 shows the number of images

correctly identified (out of 20) for al of the algorithms run on the Cat & Dog dataset.

An ANOVA test, performed on the results of the six variations of the eigenspace
projection algorithm, indicates with P < 0.97, that there is no significant difference
between the variations. An ANOVA test is also performed on the results of the six
variations of the combination eigenspace projection/Fisher discriminants algorithm.

Again, with P < 0.99, no significant difference is found between the variations.

To test the two original hypotheses, first a significant difference must be established
between the four algorithms. Since a best variation of the elgenspace projection or
combination eigenspace projection/Fisher discriminants algorithms could not be
determined, | choose the variations with the largest mean number of images correctly
identified. An ANOVA test is performed, and with P < 0.25 no significant differenceis

found.

At this time no further analysis can be performed, since no statistically significant

difference can be established between any of the algorithms.

Since no statistically significant difference can be found among any of the algorithms on
the Cat & Dog data, all three of the hypotheses are rgjected. No specific variation of the
eigenspace projection is found to perform better than any of the other variations and no

variation of the combination eigenspace projection/Fisher discriminantsis found to
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outperform any of the other variations. Fisher discriminants does not perform better than
eigenspace projection, since no difference is found between the two algorithms. The
combination of eigenspace projection and Fisher discriminants does not outperform

Fisher discriminants. Again, no difference isfound between the two algorithms.

The fact that no algorithm outperforms the rest indicates that the cat and dog images
cannot be clearly separated. Furthermore, it isinteresting to note that on average, many
more dogs are incorrectly identified than cats. This could ssimply be aresult of the fact
that dogs come in many shapes and sizes, but al catslook generally the same just
different colors. This phenomenon can also be aresult of biasesin the data. Originally,
the dataset contained only images of golden retrievers; | added 50 additional images of
different types of dogs. Therefore, the dataset may be biased to golden retriever and dogs
that look like golden retrievers and more likely to misidentify dogs that do not look like

golden retrievers.

5.5 FERET Experiments

Similar to the Cat & Dog experiments, three hypotheses spurred the FERET experiments.

1. Eigenspace projection will outperform Fisher discriminants. Since the FERET
dataset contains 160 classes and only two images per class, | believe Fisher
discriminants will have difficulty discriminating the data.

2. The combination of eigenspace projection and Fisher discriminants will outperform

all other agorithms.
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3. One of the variations of eigenspace projection and combination e genspace

projection/Fisher discriminants will perform better than the other variations.

The setup of the FERET experiments differs from the setup of the Cat & Dog
experiments. Here 10 trials are run on each algorithm, but the training and test images
are selected randomly. For each individual, two images taken on the same day are
randomly selected for training data. One image of the remaining two images, of the final
140 individuals, is randomly selected as test data. Only 140 images are used as test data
because the like-image difference algorithm requires 20 additional training images.
Therefore, for each trial 320 training images and 140 test images are used. Table 12
shows the number of images correctly identified for all of the algorithms run on the

FERET dataset.

An ANOVA test is performed on the six variations of eigenspace projection and a
significant difference, with a P < 0.00001, is found between the variations. To choose a
best performer of these variations, | sort the variations by mean number of images
correctly identified. A one-tail two-sample t-test assuming unequal variances indicates
that eigenspace projection removing the first eigenvector outperforms all other variations

of eigenspace projection, with P < 0.032.

An ANOVA test is also performed on the six variations of the combination eigenspace

projection/Fisher discriminants. The six variations are found to be significantly different

with P < 0.00001. The variations are sorted by mean number of images correctly
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identified, and a one-tail two-sample t-test assuming unequal variances indicates that
€ genspace projection, resorting eigenvectors by like-image difference and removing the
last 40% of the eigenvectors combined with Fisher discriminants outperforms all the

other variations, with P < 0.003.

Utilizing the two winning variations from above, the four algorithms are compared. First,
asingle actor ANOVA test is performed to establish significant difference between the
algorithms. P < 0.00001 indicates a difference among the algorithms. To test the first
hypothesis atwo-tail two-sample t-test assuming unequal variancesis performed on
eigenspace projection with the first eigenvector removed and Fisher discriminants. P <
0.002 indicates that Fisher discriminants outperformed eigenspace projection. To test my
second hypothesis, a one-tail two-sample t-test assuming unequal variancesis performed
on eigenspace projection with the first eigenvector removed and eigenspace projection
resorting eigenvectors by like-image difference and removing the last 40% of the
eigenvectors combined with Fisher discriminants. P < 0.005 indicates that the
combination of eigenspace projection and Fisher discriminants outperforms all other

algorithms.

Statistically significant differences are found among the algorithms on the FERET data.
Specifically, eigenspace projection removing the first eigenvector outperforms all other
eigenspace projection algorithms and el genspace projection resorting eigenvectors by
like-image difference and removing the last 40% of the eigenvectors combined with
Fisher discriminants outperforms all other eigenspace projection/Fisher discriminants

combination algorithms. Therefore, the third hypothesisis confirmed. My first
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hypothesisis rejected because eigenspace projection does not outperform Fisher
discriminants, instead the exact opposite is true and Fisher discriminants outperforms
eigenspace projection. My second hypothesisis accepted since a variation of the
combination of eigenspace projection and Fisher discriminants outperforms all other

algorithms.

The fact that Fisher discriminants performswell on the FERET dataset indicates that as

few astwo imagesin aclassis enough to separate classes. Furthermore, alarger number

of classes does not appear to reduce Fisher discriminants ability to separate classes.
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6. Conclusion

In reviewing the results of the experiments, three conclusions can be drawn. Combining
distance measures in any way does not improve performance on the origina FERET
dataset. Although like-image difference sorting of eigenvectors seemed like a good idea,
it does not improve performance on the FERET dataset. Finally, the most interesting
conclusion is that the algorithms and variations of algorithms perform very differently on
the Cat & Dog dataset and on the FERET dataset. While no significant differenceis
found among any of the algorithms on the Cat & Dog dataset, differences are found
among the algorithmsin the FERET dataset and best performing algorithms can be

selected.

One possible reason for the lack of significant difference among algorithmsin the Cat &
Dog dataset isthe size of thetest set. For each trial 20 of 200 images are used for testing
while 180 images are used for training. Since the size of the test set is small the
percentage of correctly identified images drops more quickly than if alarger number of
test images are used as in the FERET dataset. Given a chance to run further experiments
on the Cat & Dog dataset | would modify the experiment setup to use more test images

and fewer training images.

Although no difference is found among the algorithms for the Cat & Dog dataset, in the

FERET dataset a best performer isclear. The algorithm that first projectsimages into
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eigenspace and then projects them onto their Fisher basis vectors outperforms all other
algorithms. It isinteresting to note that these tests are performed over ten trials, where in

each trial test and training images are randomly selected.

6.1 Experiment Summary

The experiments performed in this work stand out from similar experiments. They are
different because they followed a specific methodology. Before experiments are
performed hypotheses are formed. Experiments are performed following know
approaches. After experiments are performed statistical tests such as the McNemar’ s test,
ANOVA test, and t-test are used to confirm or reject the hypotheses. Below isa

summary of the hypothesis, tests, and conclusions from the experiments.

Hypothesis #1: Adding raw similarity measure scores improves performance.

Tests: In section 5.2.1 raw similarity measure scores are combined and their performance
is compared to the performance of the raw similarity measures. McNemar’ stest is used to
identify significant differences among the algorithms.

Conclusion: Adding raw similarity measure scores does not improve performance.

Hypothesis #2: Bagging similarity measures improves performance.

Tests: In section 5.2.2 similarity measures are bagged and their performance is compared
to the performance of the raw similarity measures. McNemar’ stest is used to identify
significant differences among the algorithms.

Conclusion: Bagging similarity measures does not improve performance.
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Hypothesis #3: The four distance measures are identifying the same images correctly and
the same images incorrectly.

Tests: Two tests are performed in section 5.2.3. The similarity measures are correlated to
each other and images that are grossly misclassified by each measure are compared.
Conclusion: Although there is some overlap among similarity measures, they do not

overlap completely.

Hypothesis #4: Resorting the original FERET dataset by like-image difference improves
performance.

Tests: In section 5.3, the eigenvectors used by Moon & Phillips are resorted by like-
image difference and compared to the Moon & Phillips results by the McNemar’ s test.
Conclusion: Like-image difference improves performance when a small number of

eigenvectors are used.

Hypothesis #5: Resorting the restructured FERET dataset by like-image difference and
testing on different images improves performance.

Tests: In section 5.3, agorithms are run on the restructured dataset sorting by eigenvalue
and by like-image difference. Ten trials are run each randomly selecting test and training
images.

Conclusion: Like-image difference does not improve performance when test and training

datais separated.
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Hypothesis #6: One of the variations of eigenvector selection outperforms the others on
the Cat & Dog dataset.

Tests: In section 5.4, two ANOVA tests are performed, one on the six variations of

e genspace projection and one on the six variations of Fisher discriminants where images
arefirst project into eigenspace.

Conclusion: No variation of eigenvector selection outperforms the others on the Cat &

Dog dataset.

Hypothesis #7: Fisher discriminants will perform better than eigenspace projection on the
Cat & Dog dataset.

Tests: In section 5.4, an ANOVA test is performed on the four algorithms. No significant
difference isidentified among the algorithms.

Conclusion: Fisher discriminants does not perform better than eigenspace projection on

the Cat & Dog dataset.

Hypothesis #8: Fisher discriminants where images are first projected into eigenspace
outperforms all other algorithms on the Cat & Dog dataset.

Tests: In section 5.4, an ANOVA test is performed on the four algorithms. No significant
difference isidentified among the algorithms.

Conclusion: Fisher discriminants where images are first projected into eigenspace does

not outperform all other algorithms on the Cat & Dog dataset.

64



Hypothesis #9: One of the variations of eigenvector selection outperforms the others on
the FERET dataset.

Tests: In section 5.5, two ANOV A tests are performed, one on the six variations of
eigenspace projection and one on the six variations on Fisher discriminants where images
arefirst project into eigenspace.

Conclusion: In the case of eigenspace projection, removing the first eigenvector
outperforms all other variations on the FERET dataset. In the case of combining
eigenspace projection and Fisher discriminants, resorting eigenvectors by like-image
difference and removing the last 40% of the eigenvectors outperforms all the other

variations on the FERET dataset.

Hypothesis #10: Eigenspace projection outperforms Fisher discriminants on the FERET

dataset.

Tests: In section 5.5, an ANOVA test is performed on the four algorithms. Significant
difference isidentified among the algorithms. A two-tailed t-test is performed on
eigenspace projection and Fisher discriminants.

Conclusion: Eigenspace projection does not outperform Fisher discriminants on the
FERET dataset. In fact the exact oppositeis true, Fisher discriminants outperforms

eigenspace projection.

Hypothesis #11: Fisher discriminants where images are first projected into eigenspace

outperforms all other algorithms on the FERET dataset.
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Tests: In section 5.5, an ANOVA test is performed on the four algorithms. Significant
difference isidentified among the algorithms. A t-test is performed on Fisher
discriminants and the other algorithms.

Conclusion: Fisher discriminants where images are first projected into eigenspace

outperforms all other algorithms on the FERET dataset.

3 6.2 Future Work

| would like to enlarge the Cat & Dog dataset to contain more than two classes. There
are 50 images of horses available with the cat and dog images. | would like to add those
images along with another set of images of adifferent type of animal. The tests
performed on the Cat & Dog dataset could then be run on a dataset with three classes and

adataset of four classes and performance could be compared.

| would aso like to rerun the tests on the FERET dataset, where only one image of each
individual would bein the training data. | would expect performance to drop greatly on

this dataset, especially with Fisher discriminants.

Although like-image difference selection of eigenvectors did not improve performance on
the FERET dataset, | still believe that some combination of eigenvector selection will
improve performance. Therefore, | would like to continue to explore possible algorithms

for eigenvector selection that will improve classification performance within subspaces.
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Throughout my experiments | try to use statistical teststo support my results. Inthe
future | would like to rerun many of the experiments performed by Moon and Phillips
[10] and run statistical tests such as the McNemar’ s test to examine significant difference

among the results.
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4 Appendix I, Symbol Glossary

x' = Raw training image

X = Datamatrix of raw training images

W = Covariance matrix

X' = Mean centered training image

X = Datamatrix of mean centered training images
m = Mean image

P = Number of training images

N = Number of pixel sin the training images
V = Eigenvectors

L = Eigenvalues

v, =i"eigenvector

|, =i" eigenvalue
X' = Projected centered training image

y' = Raw test image
y' = Mean centered test image
y' = Projected centered test image

W( = Modified covariance matrix
V ¢ = Eigenvectors of W(
L ¢ = Eigenvalues of W(

V = Xve

C = Number of classes

S = Within class scatter matrix for i class
Sy = Within class scatter matrix

S, = Between class scatter matrix

n. = Number of imagesini" class

X' = Class mean centered image

U = Any orthonormal basis

m = Centered class mean

m = Projected centered class mean
e = Energy dimension

s = Stretching dimension

w = Like-image difference
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