
Computer Science
Technical Report

ANALYSIS OF PCA-BASED AND FISHER

DISCRIMINANT-BASED IMAGE RECOGNITION

ALGORITHMS

Wendy S. Yambor

July 2000

Technical Report CS-00-103

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

THESIS

ANALYSIS OF PCA-BASED AND FISHER DISCRIMINANT-BASED

IMAGE RECOGNITION ALGORITHMS

Submitted by

Wendy S. Yambor

Department of Computer Science

In Partial Fulfillment of the Requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2000

ii

COLORADO STATE UNIVERSITY

July 6, 2000

WE HEREBY RECOMMEND THAT THE THESIS PREPARED

UNDER OUR SUPERVISION BY WENDY S. YAMBOR ENTITLED

ANALYSIS OF PCA-BASED AND FISHER DISCRIMINANT-BASED

IMAGE RECOGNITION ALGORITHMS BE ACCEPTED AS FULFILLING IN

PART REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE.

Committee on Graduate Work

Advisor

Co-Advisor

Department Head

iii

ABSTRACT OF THESIS

ANALYSIS OF PCA-BASED AND FISHER DISCRIMINANT-BASED IMAGE
RECOGNITION ALGORITHMS

One method of identifying images is to measure the similarity between images. This is

accomplished by using measures such as the 1L norm, 2L norm, covariance,

Mahalanobis distance, and correlation. These similarity measures can be calculated on

the images in their original space or on the images projected into a new space. I discuss

two alternative spaces in which these similarity measures may be calculated, the subspace

created by the eigenvectors of the covariance matrix of the training data and the subspace

created by the Fisher basis vectors of the data. Variations of these spaces will be

discussed as well as the behavior of similarity measures within these spaces.

Experiments are presented comparing recognition rates for different similarity measures

and spaces using hand labeled imagery from two domains: human face recognition and

classifying an image as a cat or a dog.

Wendy S. Yambor
Computer Science Department

Colorado State University
Fort Collins, CO 80523

Summer 2000

iv

Acknowledgments

I thank my committee, Ross Beveridge, Bruce Draper, Micheal Kirby, and Adele Howe,

for their support and knowledge over the past two years. Every member of my

committee has been involved in some aspect of this thesis. It is through their interest and

persuasion that I gained knowledge in this field.

I thank Jonathon Phillips for providing me with the results and images from the FERET

evaluation. Furthermore, I thank Jonathon for patiently answering numerous questions.

v

Table of Contents

1. Introduction 1
1.1 Previous Work………………………………………………………………. 1
1.2 A General Algorithm………………………………………………………... 2
1.3 Why Study These Subspaces?………………………………………………. 3
1.4 Organization of Following Sections………………………………………… 4

2. Eigenspace Projection 5
2.1 Recognizing Images Using Eigenspace, Tutorial on Original Method……... 6
2.2 Tutorial for Snapshot Method of Eigenspace Projection…………….……... 11
2.3 Variations…………………………………………………………….……… 14

3. Fisher Discriminants 15
3.1 Fisher Discriminants Tutorial (Original Method)…………………..……….. 15
3.2 Fisher Discriminants Tutorial (Orthonormal Basis Method).……….………. 20

4. Variations 29
4.1 Eigenvector Selection……………………………………………….………. 29
4.2 Ordering Eigenvectors by Like-Image Difference………………….………. 30
4.3 Similarity & Distance Measures…………………………………….………. 32
4.4 Are similarity measures the same inside and outside of eigenspace?………. 35

5. Experiments 43
5.1 Datasets……………………………………………………………………… 43

5.1.1 The Cat & Dog Dataset………………………………………………… 43
5.1.2 The FERET Dataset……………………………………………………. 44
5.1.3 The Restructured FERET Dataset……………………………………… 45

5.2 Bagging and Combining Similarity Measures………………………….…… 45
5.2.1 Adding Distance Measures………………………………………….….. 46
5.2.2 Distance Measure Aggregation………………………………………… 48
5.2.3 Correlating Distance Metrics…………………………………………… 49

5.3 Like-Image Difference on the FERET dataset….…………………………... 51
5.4 Cat & Dog Experiments………………………………………………..……. 54
5.5 FERET Experiments…………………………………………………………. 56

6. Conclusion ………………………………………………………………………. 61
6.1 Experiment Summary……..……………………………………………….... 62
6.2 Future Work………………………………………………………………….. 66

Appendix I 68
References 69

1

1. Introduction

Two image recognition systems are examined, eigenspace projection and Fisher

discriminants. Each of these systems examines images in a subspace. The eigenvectors

of the covariance matrix of the training data create the eigenspace. The basis vectors

calculated by Fisher discriminants create the Fisher discriminants subspace. Variations

of these subspaces are examined. The first variation is the selection of vectors used to

create the subspaces. The second variation is the measurement used to calculate the

difference between images projected into these subspaces. Experiments are performed to

test hypotheses regarding the relative performance of subspace and difference measures.

Neither eigenspace projection nor Fisher discriminants are new ideas. Both have been

examined by researches for many years. It is the work of these researches that has helped

to revolutionize image recognition and bring face recognition to the point where it is now

usable in industry.

1.1 Previous Work

Projecting images into eigenspace is a standard procedure for many appearance-based

object recognition algorithms. A basic explanation of eigenspace projection is provided

by [20]. Michael Kirby was the first to introduce the idea of the low-dimensional

characterization of faces. Examples of his use of eigenspace projection can be found in

[7,8,16]. Turk & Pentland worked with eigenspace projection for face recognition [21].

2

More recently Shree Nayar used eigenspace projection to identify objects using a

turntable to view objects at different angles as explained in [11].

R.A. Fisher developed Fisher’s linear discriminant in the 1930’s [5]. Not until recently

have Fisher discriminants been utilized for object recognition. An explanation of Fisher

discriminants can be found in [4]. Swets and Weng used Fisher discriminants to cluster

images for the purpose of identification in 1996 [18,19,23]. Belhumeur, Hespanha, and

Kriegman also used Fisher discriminants to identify faces, by training and testing with

several faces under different lighting [1].

1.2 A General Algorithm

An image may be viewed as a vector of pixels where the value of each entry in the vector

is the grayscale value of the corresponding pixel. For example, an 8x8 image may be

unwrapped and treated as a vector of length 64. The image is said to sit in N-dimensional

space, where N is the number of pixels (and the length of the vector). This vector

representation of the image is considered to be the original space of the image.

The original space of an image is just one of infinitely many spaces in which the image

can be examined. Two specific subspaces are the subspace created by the eigenvectors of

the covariance matrix of the training data and the basis vectors calculated by Fisher

discriminants. The majority of subspaces, including eigenspace, do not optimize

discrimination characteristics. Eigenspace optimizes variance among the images. The

3

exception to this statement is Fisher discriminants, which does optimize discrimination

characteristics.

Although some of the details may vary, there is a basic algorithm for identifying images

by projecting them into a subspace. First one selects a subspace on which to project the

images. Once this subspace is selected, all training images are projected into this

subspace. Next each test image is projected into this subspace. Each test image is

compared to all the training images by a similarity or distance measure, the training

image found to be most similar or closest to the test image is used to identify the test

image.

1.3 Why Study These Subspaces?

Projecting images into subspaces has been studied for many years as discussed in the

previous work section. The research into these subspaces has helped to revolutionize

image recognition algorithms, specifically face recognition. When studying these

subspaces an interesting question arises: under what conditions does projecting an image

into a subspace improve performance. The answer to this question is not an easy one.

What specific subspace (if any at all) improves performance depends on the specific

problem. Furthermore, variations within the subspace also effect performance. For

example, the selection of vectors to create the subspace and measures to decide which

images are a closest match, both effect performance.

4

1.4 Organization of Following Sections

I discuss two alternative spaces commonly used to identify images. In chapter 2, I

discuss eigenspaces. Eigenspace projection, also know as Karhunen-Loeve (KL) and

Principal Component Analysis (PCA), projects images into a subspace such that the first

orthogonal dimension of this subspace captures the greatest amount of variance among

the images and the last dimension of this subspace captures the least amount of variance

among the images. Two methods of creating an eigenspace are examined, the original

method and a method designed for high-resolution images know as the snapshot method.

In chapter 3, Fisher discriminants is discussed. Fisher discriminants project images such

that images of the same class are close to each other while images of different classes are

far apart. Two methods of calculating Fisher discriminants are examined. One method is

the original method and the other method first projects the images into an orthonormal

basis defining a subspace spanned by the training set.

Once images are projected into one of these spaces, a similarity measure is used to decide

which images are closest matches. Chapter 4 discusses variations of these two methods,

such as methods of selecting specific eigenvectors to create the subspace and similarity

measures. In chapter 5, I discuss experiments performed on both these methods on two

datasets. The first dataset is the Cat & Dog dataset, which was developed at Colorado

State University. The second dataset is the FERET dataset, which was made available to

me by Jonathan Phillips at the National Institute of Standard and Technology [10,12,13].

5

2. Eigenspace Projection

Eigenspace is calculated by identifying the eigenvectors of the covariance matrix derived

from a set of training images. The eigenvectors corresponding to non-zero eigenvalues of

the covariance matrix form an orthonormal basis that rotates and/or reflects the images in

the N-dimensional space. Specifically, each image is stored in a vector of size N.

[]Ti
N

ii xxx ...1= (1)

The images are mean centered by subtracting the mean image from each image vector1.

mxx ii −= , where ∑
=

=
P

i

ix
P

m
1

1
(2)

 These vectors are combined, side-by-side, to create a data matrix of size NxP (where P is

the number of images).

[]PxxxX |...|| 21= (3)

The data matrix X is multiplied by its transpose to calculate the covariance matrix.

TXX=Ω (4)

This covariance matrix has up to P eigenvectors associated with non-zero eigenvalues,

assuming P<N. The eigenvectors are sorted, high to low, according to their associated

eigenvalues. The eigenvector associated with the largest eigenvalue is the eigenvector

1 The bar notation here is slightly nonstandard, but is intended to suggest the relationship to the mean. A
complete glossary of symbols appears in Appendix I.

6

that finds the greatest variance in the images. The eigenvector associated with the second

largest eigenvalue is the eigenvector that finds the second most variance in the images.

This trend continues until the smallest eigenvalue is associated with the eigenvector that

finds the least variance in the images.

2.1 Recognizing Images Using Eigenspace, Tutorial on Original Method

Identifying images through eigenspace projection takes three basic steps. First the

eigenspace must be created using training images. Next, the training images are

projected into the eigenspace. Finally, the test images are identified by projecting them

into the eigenspace and comparing them to the projected training images.

1. Create Eigenspace

The following steps create an eigenspace.

1. Center data: Each of the training images must be centered. Subtracting the mean

image from each of the training images centers the training images as shown in

equation (2). The mean image is a column vector such that each entry is the

mean of all corresponding pixels of the training images.

2. Create data matrix: Once the training images are centered, they are combined

into a data matrix of size NxP, where P is the number of training images and each

column is a single image as shown in equation (3).

3. Create covariance matrix: The data matrix is multiplied by its transpose to

create a covariance matrix as shown in equation (4).

7

4. Compute the eigenvalues and eigenvectors: The eigenvalues and

corresponding eigenvectors are computed for the covariance matrix.

VV Λ=Ω (5)

here V is the set of eigenvectors associated with the eigenvalues Λ .

5. Order eigenvectors: Order the eigenvectors Vvi ∈ according to their

corresponding eigenvalues Λ∈iλ from high to low. Keep only the eigenvectors

associated with non-zero eigenvalues. This matrix of eigenvectors is the

eigenspace V , where each column of V is an eigenvector.

[]PvvvV |...|| 21= (6)

2. Project training images

Each of the centered training images (ix) is projected into the eigenspace. To project an

image into the eigenspace, calculate the dot product of the image with each of the ordered

eigenvectors.

iTi xVx =~ (7)

Therefore, the dot product of the image and the first eigenvector will be the first value in

the new vector. The new vector of the projected image will contain as many values as

eigenvectors.

3. Identify test images

Each test image is first mean centered by subtracting the mean image, and is then

projected into the same eigenspace defined by V .

myy ii −= , where ∑
=

=
p

i

ix
P

m
1

1
(8)

and

8

iTi yVy =~ (9)

The projected test image is compared to every projected training image and the training

image that is found to be closest to the test image is used to identify the training image.

The images can be compared using any number of similarity measures; the most common

is the 2L norm. I will discuss the different similarity measures in section 4.3.

The following is an example of identifying images through eigenspace projection. Let

the four images in Figure 1 be training images and let the additional image in Figure 1 be

a test image. The four training images and the mean image are:



































=

217
255
0

238
33
251
48
229
225

1x



































=

2
255
17
247
18
255
24
219
10

2x



































=

226
57
243
244
59
232
234
35

196

3x



































=

235
255
249
255
0

255
224
223
255

4x



































=

00.170
50.205
25.127
00.246
50.27
25.248
5.135
50.176
50.171

m

The centered images are:



































−

−

=

00.47
50.49
25.127
00.8

50.5
75.2

50.84
50.52
50.53

1x



































−

−

−

−

−

=

00.168
50.49

25.110
00.1
50.9

75.6
50.108

50.42
50.161

2x



































−

−

−

−

=

00.56
50.148

75.115
00.2
50.31
25.16
50.101
50.141

50.24

3x



































−=

00.65
50.49.9
75.121

00.9
50.27

75.6
50.91
50.46
50.83

4x

9

Figure 1. Four training images and one test image.

Combine all the centered training images into one data matrix:



































−
−

−−
−−

−−
−

−−
−

−

=Χ

00.6500.5600.16800.47
50.4950.14850.4950.49
75.12175.11525.11025.127

00.900.200.100.8
50.2750.3150.950.5

75.625.1675.675.2
50.9150.10150.10850.84
50.4650.14150.4250.52
50.8350.2450.16150.53

Calculate the covariance matrix:



































−−−−
−−−−−

−−−
−−

−−−−
−−−−−

−−−
−−−−−

−−−

=ΧΧ=Ω

377941108826937711831147625888957436446
1108829403229193966237321820097280174851

26937229195656917725.6452153456032208324000
713961772150364781188324113

18316237645364186974712475851304
147632172153785.74636319963045778

258882009745603118812471997375871915523129
957428017220833245851304519155267473639

3644648512400011330477823129363936517

T

The ordered non-zero eigenvectors of the covariance matrix and the corresponding

eigenvalues are:

10



































−

−

−

=

402.0
296.0

560.0
009.0
035.0
031.0

480.0
279.0

356.0

1v



































−

−

−

−
−

=

432.0
492.0
112.0
004.0

105.0
048.0

044.0
489.0
552.0

2v



































−

−

−

=

391.0
401.0
585.0
078.0
222.0

064.0
309.0
347.0
264.0

3v

1535201 =λ 506962 =λ 227813 =λ

The eigenspace is defined by the projection matrix



































−−
−

−
−

−−

−−
−−

=

391.0432.0402.0
401.0492.0296.0
585.0112.0560.0
078.0004.0009.0
222.0105.0035.0

064.0048.0031.0
309.0044.0480.0
347.0489.0279.0
264.0552.0356.0

V

The four centered training images projected into eigenspace are:

















−
−
−

==
57.96
31.117
09.103

~ 11 xVx T














−
==

45.47
29.98

92.265
~ 22 xVx T

















−
==

14.46
90.125
76.229

~ 33 xVx T















−==

26.95
88.106

24.139
~ 44 xVx T

The test image viewed as a vector and the centered test image are:

11



































=

2
255
4

244
21

246
44
244
20

1y



































−

−
−

−
−
−

−

=

168
5.49
25.123

2
5.6
25.2
5.88

5.67
5.151

1y

The projected test image is:















−
==

6.50
75.80

65.266
~ 11 yVy T

The 2L norms are 296, 18, 508 and 449 of the test image 1y and the training images 1x ,

2x , 3x and 4x respectively. By comparing the 2L norms, the second training image 2x

is found to be closest to the test image 1y , therefore the test image 1y is identified as

belonging to the same class of images as the second training image 2x . By viewing the

original images, one sees image 1y is most like 2x .

2.2 Tutorial for Snapshot Method of Eigenspace Projection

The method outlined above can lead to extremely large covariance matrices. For

example, images of size 64x64 combine to create a data matrix of size 4096xP and a

covariance matrix of size 4096x4096. This is a problem because calculating the

covariance matrix and the eigenvectors/eigenvalues of the covariance is computationally

demanding. It is known that for a NxM matrix the maximum number of non-zero

eigenvectors the matrix can have is min(N-1,M-1) [6,7,20]. Since the number of training

12

images (P) is usually less than the number of pixels (N), the most

eigenvectors/eigenvalues that can be found are P-1.

A common theorem in linear algebra states that the eigenvalues of TXX and XX T are

the same. Furthermore, the eigenvectors of TXX are the same as the eigenvectors of

XX T multiplied by the matrix X and normalized [6,7,20]. Using this theorem, the

Snapshot method can be used to create the eigenspace from a PxP matrix rather than a

NxN covariance matrix. The following steps should be followed.

1. Center data: (Same as original method)

2. Create data matrix: (Same as original method)

3. Create covariance matrix: The data matrix’s transpose is multiplied by the

data matrix to create a covariance matrix.

XX T=Ω′ (10)

4. Compute the eigenvalues and eigenvectors of O′ : The eigenvalues and

corresponding eigenvectors are computed for Ω′ .

VV ′Λ′=′Ω′ (11)

5. Compute the eigenvectors of TXX : Multiply the data matrix by the

eigenvectors.

VXV ′=ˆ (12)

Divide the eigenvectors by their norm.

i

i
i v

v
v

ˆ
ˆ

= (13)

6. Order eigenvectors: (Same as original method)

13

The following is the same example as used previously, but the eigenspace is calculated

using the Snapshot method. The same training and test images will be used as shown in

Figure 1. The revised covariance matrix is:



















−−
−−

−−
−−

=ΧΧ=Ω′

39888141414301411015
14141707715091433998
43014509148262711301

115015339981130133712

T

The ordered eigenvectors and corresponding non-zero eigenvalues of the revised

covariance matrix are:


















−
−

=′

355.0
586.0
679.0
263.0

1v



















−
−

=′

475.0
559.0
437.0

521.0

2v



















−

−

=′

631.0
306.0

314.0
640.0

3v

1535201 =λ 506962 =λ 227813 =λ

The data matrix multiplied by the eigenvectors are:



































−

−

−

=

593.157
108.116

448.219
452.3
699.13
435.12
906.187
108.109

5734.139

ˆ1v



































−

−

−

=

366.97
715.11
098.25

781.0
655.23

777.10
981.9
995.109
311.124

ˆ2v



































−

−

−

=

978.58
533.60
213.88
725.11
493.33

591.9
675.46
380.52
787.39

ˆ3v

Below are the normalized eigenvectors. Note that they are the same eigenvectors that

were calculated using the original method.

14



































−

−

−

402.0
296.0

560.0
009.0
035.0
032.0

480.0
279.0

356.0

1v



































−

−

−

−
−

432.0
492.0
112.0
004.0

105.0
048.0

044.0
489.0
552.0

2v



































−

−

−

391.0
401.0
585.0
078.0
222.0

064.0
309.0
347.0
264.0

3v

2.3 Variations

Centering the images by subtracting the mean image is one common method of

modifying the original images. Another variant is to subtract the mean of each image

from all of the pixel values for that image [20]. This variation simplifies the correlation

calculation, since the images are already mean subtracted. Yet another variation is to

normalize each image by dividing each pixel value by the norm of the image, so that the

vector has a length of one [20]. This variation simplifies the covariance calculation to a

dot product. An image cannot be both centered and normalized, since these actions

counteract the one another. But an image can be centered and mean subtracted or mean

subtracted and normalized. For all my work, I use only centered images.

15

3. Fisher Discriminants

Fisher discriminants group images of the same class and separates images of different

classes. Images are projected from N-dimensional space (where N is the number of

pixels in the image) to C-1 dimensional space (where C is the number of classes of

images). For example, consider two sets of points in 2-dimensional space that are

projected onto a single line (Figure 2a). Depending on the direction of the line, the points

can either be mixed together (Figure 2b) or separated (Figure 2c). Fisher discriminants

find the line that best separates the points. To identify a test image, the projected test

image is compared to each projected training image, and the test image is identifed as the

closest training image.

3.1 Fisher Discriminants Tutorial (Original Method)

As with eigenspace projection, training images are projected into a subspace. The test

images are projected into the same subspace and identified using a similarity measure.

What differs is how the subspace is calculated. Following are the steps to follow to find

the Fisher discriminants for a set of images.

1. Calculate the within class scatter matrix: The within class scatter matrix measures

the amount of scatter between items in the same class. For the ith class, a scatter

matrix (iS) is calculated as the sum of the covariance matrices of the centered images

in that class.

16

Figure 2. (a) Points in 2-dimensional space. (b) Points mixed when projected onto a line. (c) Points
separated when projected onto a line.

∑
∈

−−=
iXx

T
iii mxmxS))(((14)

where im is the mean of the images in the class. The within class scatter matrix (WS)

is the sum of all the scatter matrices.

∑
=

=
C

i
iW SS

1

(15)

where C is the number of classes.

2. Calculate the between class scatter matrix: The between class scatter matrix (BS)

measures the amount of scatter between classes. It is calculated as the sum of the

covariance matrices of the difference between the total mean and the mean of each

class.

T
ii

C

i
iB mmmmnS))((

1

−−= ∑
=

(16)

where in is the number of images in the class, im is the mean of the images in the

class and m is the mean of all the images.

17

3. Solve the generalized eigenvalue problem: Solve for the generalized eigenvectors

(V) and eigenvalues (Λ) of the within class and between class scatter matrices.

VSVS WB Λ= (17)

4. Keep first C-l eigenvectors: Sort the eigenvectors by their associated eigenvalues

from high to low and keep the first 1−C eigenvectors. These eigenvectors form the

Fisher basis vectors.

5. Project images onto Fisher basis vectors: Project all the original (i.e. not centered)

images onto the Fisher basis vectors by calculating the dot product of the image with

each of the Fisher basis vectors. The original images are projected onto this line

because these are the points that the line has been created to discriminate, not the

centered images.

Following is an example of calculating the Fisher discriminants for a set of images. Let

the twelve images in Figure 3 be training images. There are two classes; images 61 xx −

are in the first class and images 127 xx − are in the second class. The training images

viewed as vectors are: =

244
27
242
240
30
252
225
22
248

249
51

215
252
55
254
213
21

245

247
34
236
229
44
255
235
16
208

234
35
208
226
40
225
222
48

246

230
48
251
228
44
244
236
15
188

226
57
243
244
59
232
234
35

196

654321



































=



































=



































=



































=



































=



































= xxxxxx

18

Figure 3. Twelve training images.



































=



































=



































=



































=



































=



































=

254
255
233
222
31

245
215
251
224

237
225
227
251
19
237
237
243
237

188
234
194
255
28
255
208
241
255

250
236
190
246
38
247
231
255
232

240
253
238
251
0

251
205
255
234

235
255
249
255
0

255
224
223
255

121110987 xxxxxx

The scatter matrices are:



































=

0.460.26-0.28-0.140.13-0.480.23-0.28-0.77
0.26-0.680.110.280.560.17-0.030.010.83-
0.28-0.111.460.09-0.07-0.280.620.63-1.69-

0.140.280.09-0.550.280.210.26-0.09-0.39
0.13-0.560.07-0.280.550.10-0.01-0.050.60-

0.480.17-0.280.210.10-0.790.06-0.72-0.14
0.23-0.030.620.26-0.01-0.06-0.420.15-1.09-
0.28-0.010.63-0.09-0.050.73-0.15-0.830.59

0.770.83-1.69-0.390.60-0.141.09-0.593.81

1S

19



































=

2.820.561.130.84-0.00-0.41-0.590.500.21
0.560.841.000.30-0.49-0.220.44-0.09-0.17
1.131.002.940.17-1.54-0.01-0.12-0.59-0.79
0.84-0.30-0.17-0.790.47-0.160.060.34-0.36
0.00-0.49-1.54-0.47-1.310.18-0.250.450.64-
0.41-0.220.01-0.160.18-0.240.28-0.16-0.08

0.590.44-0.12-0.060.250.28-0.820.14-0.27
0.500.09-0.59-0.34-0.450.16-0.14-0.740.51-
0.210.170.790.360.64-0.080.270.51-0.63

2S

The within class scatter matrix is:



































=+=

3.280.300.850.70-0.13-0.070.360.220.98
0.301.521.110.02-0.070.060.40-0.08-0.66-
0.851.114.400.25-1.61-0.260.501.22-0.91-
0.70-0.02-0.25-1.330.20-0.370.20-0.42-0.76
0.13-0.071.61-0.20-1.850.29-0.250.501.23-

0.070.060.260.370.29-1.030.34-0.88-0.22
0.360.40-0.500.20-0.250.34-1.240.29-0.82-
0.220.08-1.22-0.42-0.500.88-0.29-1.570.08
0.980.66-0.91-0.761.23-0.220.82-0.084.44

21 SSSW

The mean of each class and the total mean are:



































=



































=



































=

236.17
142.50
227.17
241.58
32.33
246.00
223.75
135.42
228.17

234.00
243.00
221.83
246.67
19.33
248.33
220.00
244.67
234.50

238.33
42.00
232.50
236.50
45.33

243.67
227.50
26.17
221.83

21 mmm

20

The between class scatter matrix is:



































=

0.0010.044-0.0020.002-0.0060.001-0.0020.047-0.003-
0.044-2.0200.107-0.1020.261-0.0470.075-2.1960.127

0.0020.107-0.0060.005-0.0140.003-0.0040.117-0.007-
0.002-0.1020.005-0.0050.013-0.0020.004-0.1110.006
0.0060.261-0.0140.013-0.0340.006-0.0100.284-0.017-
0.001-0.0470.003-0.0020.006-0.0010.002-0.0510.003

0.0020.075-0.0040.004-0.0100.002-0.0030.082-0.005-
0.047-2.1960.117-0.1110.284-0.0510.082-2.3870.138
0.003-0.1270.007-0.0060.017-0.0030.005-0.1380.008

BS

Since there are two classes, only one eigenvector is kept. The non-zero eigenvector and

corresponding eigenvalue of VSVS WB λ= are:

0.22-
0.23
0.08
0.12-

0.04
0.59
0.48
0.51
0.18

1



































=v
45.2911 =λ

The values of the images projected onto the first eigenvector are shown in Table 1.

Figure 4 shows a plot of the points; clearly illustrating the separation between the two

classes.

3.2 Fisher Discriminants Tutorial (Orthonormal Basis Method)

Two problems arise when using Fisher discriminants. First, the matrices needed for

computation are very large, causing slow computation time and possible problems with

21

Table 1. The values of the images projected onto the first eigenvector.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Class 1 259 255 256 256 254 257 Class 2 414 413 415 412 409 412

Figure 4. Plot of the images projected onto Fisher basis vectors.

numeric precision. Second, since there are fewer training images than pixels, the data

matrix is rank deficient. It is possible to solve the eigenvectors and eigenvalues of a rank

deficient matrix by using a generalize singular value decomposition routine, but a

simplier solution exists. A simplier solution is to project the data matrix of training

images into an orthonormal basis of size PxP (where P is the number of training images).

This projection produces a data matrix of full rank that is much smaller and therefore

decreases computation time. The projection also preserves information so the final

outcome of Fisher discriminants is not affected. Following are the steps to follow to find

the Fisher discriminants of a set of images by first projecting the images into any

orthonormal basis.

1. Compute means: Compute the mean of the images in each class(im)and the total

mean of all images (m).

2. Center the images in each class: Subtract the mean of each class from the images in

that class.

iii mxxXXXx −=∈∈∀ ˆ,, (18)

22

3. Center the class means: Subtract the total mean from the class means.

mmm i −=ˆ (19)

4. Create a data matrix: Combine the all images, side-by-side, into one data matrix.

5. Find an orthonormal basis for this data matrix: This can be accomplished by

using a QR Orthogonal-triangular decomposition or by calculating the full set of

eigenvectors of the covariance matrix of the training data. Let the orthonormal basis

be U .

6. Project all centered images into the orthonormal basis: Create vectors that are the

dot product of the image and the vectors in the orthonormal basis.

xUx T ˆ~ = (20)

7. Project the centered means into the orthonormal basis:

i
T

i mUm ˆ~ = (21)

8. Calculate the within class scatter matrix: The within class scatter matrix measures

the amount of scatter between items within the same class. For the ith class a scatter

matrix (iS) is calculated as the sum of the covariance matrices of the projected

centered images for that class.

∑
∈

=
iXx

T
i xxS ~~ (22)

The within class scatter matrix (WS) is the sum of all the scatter matrices.

∑
=

=
C

i
iW SS

1

(23)

where C is the number of classes.

23

9. Calculate the between class scatter matrix: The between class scatter matrix (BS)

measures the amount scatter between classes. It is calculated as the sum of the

covariance matrices of the projected centered means of the classes, weighted by the

number of images in each class.

T
ii

C

i
iB mmnS ~~

1
∑

=

= (24)

where in is the number of images in the class.

10. Solve the generalized eigenvalue problem: Solve for the generalized eigenvectors

(V) and eigenvalues (Λ) of the within class and between class scatter matrices.

VSVS WB λ= (25)

11. Keep the first C-l eigenvectors: Sort the eigenvectors by their associated

eigenvalues from high to low and keep the first 1−C eigenvectors. These are the

Fisher basis vectors.

12. Project images onto eigenvectors: Project all the rotated original (i.e. Not centered)

images onto the Fisher basis vectors. First project the original images into the

orthonormal basis, and then project these projected images onto the Fisher basis

vectors. The original rotated images are projected onto this line because these are the

points that the line has been created to discriminate, not the centered images.

The same example as before will be calculated using the orthonormal basis. Let the

twelve images in Figure 3 be training images. The training images viewed as vectors, the

means of each class and the total mean are the same as in the previous example.

24

The centered images are:



































=



































=



































=



































=



































=



































=

5.67
15.00-
9.50
3.50
15.33-
8.33
2.50-
4.17-

26.17

ˆ

10.67
9.00
17.50-
15.50
9.67

10.33
14.50-
5.17-

23.17

ˆ

8.67
8.00-
3.50
7.50-
1.33-

11.33
7.50
10.17-
13.83-

ˆ

4.33-
7.00-
24.50-
10.50-
5.33-

18.67-
5.50-

21.83
24.17

ˆ

8.33-
6.00

18.50
8.50-
1.33-
0.33
8.50
11.17-
33.83-

ˆ

12.33-
15.00
10.50
7.50

13.67
11.67-
6.50
8.83
25.83-

ˆ 654321 xxxxxx



































=



































=



































=



































=



































=



































=

20.00
12.00
11.17
24.67-

11.67
3.33-
5.00-
6.33
10.50-

ˆ

3.00
18.00-
5.17
4.33
0.33-

11.33-
17.00
1.67-
2.50

ˆ

46.00-
9.00-
27.83-
8.33
8.67
6.67
12.00-
3.67-
9.50-

ˆ

16.00
7.00-
31.83-
0.67-

18.67
1.33-

11.00
10.33

2.50-

ˆ

6.00
10.00
16.17
4.33
19.33-
2.67
15.00-
10.33

0.50-

ˆ

1.00
12.00
27.17
8.33
19.33-
6.67
4.00
21.67-
20.50

ˆ 121110987 xxxxxx

The centered class means are:



































=



































=

2.17-
100.50

5.33-
5.08
13.00-
2.33
3.75-

109.25
6.33

ˆ

2.17
100.50-
5.33
5.08-

13.00
2.33-

3.75
109.25-

6.33-

ˆ 21 mm

25

The orthonormal basis calculated by eigenspace projection is:



































=

0.240.06-0.270.01-0.32-0.100.770.360.17
0.16-0.46-0.30-0.28-0.30-0.67-0.050.05-0.24
0.13-0.480.02-0.12-0.210.06-0.08-0.170.81

0.140.060.550.66-0.27-0.010.38-0.120.09-
0.12-0.610.33-0.26-0.41-0.010.250.39-0.22-
0.61-0.020.250.440.55-0.100.21-0.110.07
0.46-0.37-0.15-0.42-0.130.610.160.13-0.13
0.50-0.130.450.09-0.440.39-0.340.09-0.25-
0.21-0.140.38-0.16-0.070.03-0.05-0.800.35-

U

The centered images projected into the orthonormal basis are:



































=



































=



































=



































=



































=



































=

2.50-
6.10
3.35
5.54
5.12
9.96
7.31-

33.29
0.34

~

2.58
1.62
0.62-
5.75-
26.12-
10.14-
0.89-

20.47
21.62-

~

0.47-
2.21-

3.36
11.87
7.86-

15.99
4.71
6.04-

12.47

~

0.52
4.29-
5.71-

1.89
24.40
8.87-
9.95

11.31
35.92-

~

2.01
3.89-
1.93-
4.91
1.14
4.50
5.32-
27.65-

31.66

~

2.14-
2.67
1.56
18.46-
3.31
11.44-
1.15-
31.39-

13.07

~ 654321 xxxxxx



































=







































































































=



































=



































=

0.18-
5.59
8.96-

10.26
2.63-

12.33-
30.11
7.59-

16.12

~

2.99
4.30
1.44
10.83-
12.41
22.01
3.68
2.14
1.07

~

0.33-
2.03
2.02-

8.19
1.66-
1.89-
38.76-
28.19-
32.09-

~

1.98-
4.82-
4.15
4.35-

10.62-
11.21
25.17
11.15-
29.04-

~

0.77
1.94-

14.82
4.06
6.27
20.17-
2.16-

13.28
16.17

~

1.26-
5.16-
9.43-
7.32-
3.78-

1.17
18.05-
31.50
27.79

~ 121110987 xxxxxx

26

The centered means projected into the orthonormal basis are:



































=



































=

68.88-
40.03-

25.06
34.87-
20.01
111.83-
33.76
5.15-
7.87-

~

68.88
40.03
25.06-

34.87
20.01-

111.83
33.76-
5.15
7.87

~
21 mm

The within class scatter matrix is:



































=

0.0400000000
00.190000000
000.47 000000
0000.9500000
00001.710000
000001.86000
0000003.5900
00000005.590
000000006.25

WS

Notice that the within class scatter matrix is a diagonal matrix and the values along the

diagonal are the eigenvalues associated with the eigenvectors used to create the

orthonormal basis. This occurs because the images are projected into this orthonormal

basis before calculating the within class scatter matrix. Therefore each projected image is

orthogonal to all other projected images.

The between class scatter matrix is:

27



































=

0.950.550.35-0.480.28-1.540.47-0.070.11
0.550.320.20-0.280.16-0.900.27-0.040.06
0.35-0.20-0.130.17-0.100.56-0.170.03-0.04-

0.480.280.17-0.240.14-0.780.24-0.040.05
0.28-0.16-0.100.14-0.080.45-0.140.02-0.03-

1.540.900.56-0.780.45-2.500.76-0.120.18
0.47-0.27-0.170.24-0.140.76-0.230.03-0.05-

0.070.040.03-0.040.02-0.120.03-0.000.01
0.110.060.04-0.050.03-0.180.05-0.010.01

BS

Since there are two classes, only one eigenvector is kept. The non-zero eigenvector and

corresponding eigenvalue of VSVS WB λ= are:



































=

0.9926
0.1113
0.0283-

0.0196
0.0063-

0.0322
0.0050-
0.0005
0.0007

1v 291.4492 1 =λ

The values of the rotated images projected onto the first eigenvector are shown in Table

2. Figure 5 shows a plot of the points; you can clearly see the separation between the two

classes.

28

Table 2. The values of the images projected onto the first eigenvector.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Class 1 -259 -255 -256 -256 -254 -257 Class 2 -414 -413 -415 -412 -409 -412

Figure 5. Plot of the images projected onto Fisher basis vectors.

29

4. Variations

4.1 Eigenvector Selection

Until this point, when creating a subspace using eigenspace projection we use all

eigenvectors associated with non-zero eigenvalues. The computation time of eigenspace

projection is directly proportional to the number of eigenvectors used to create the

eigenspace. Therefore by removing some portion of the eigenvectors computation time is

decrease. Furthermore, by removing additional eigenvectors that do not contribute to the

classification of the image, performance can be improved. Many variations of

eigenvector selection have been considered; I will discuss five. These may be applied

either alone or as part of Fisher discriminants.

1. Standard eigenspace projection: All eigenvectors corresponding to non-zero

eigenvalues are used to create the subspace.

2. Remove the last 40% of the eigenvectors: Since the eigenvectors are sorted by the

corresponding descending eigenvalues, this method removes the eigenvectors that

find the least amount of variance among the images. Specifically, 40% of the

eigenvectors that find the least amount of variance are removed [10].

3. Energy dimension: Rather than use a standard cutoff for all subspaces, this method

uses the minimum number of eigenvectors to guarantee that energy (e) is greater than

30

a threshold. A typical threshold is 0.9. The energy of the ith eigenvector is the ratio of

the sum of the first i eigenvalues over the sum of all the eigenvalues [7]

∑

∑

=

== k

j
j

i

j
j

ie

1

1

λ

λ
(30)

4. Stretching dimension: Another method of selecting eigenvectors based on the

information provided by the eigenvalues is to calculate the stretch (s) of an

eigenvector. The stretch of the ith eigenvector is the ratio of the ith eigenvalue (iλ)

over the maximum eigenvalue (1λ) [7]. A common threshold for the stretching

dimension is 0.01.

1λ
λi

is = (31)

5. Removing the first eigenvector: The previous three methods assume that the

information in the last eigenvectors work against classification. This method assumes

that information in the first eigenvector works against classification. For example,

lighting causes considerable variation in otherwise identical images. Hence, this

method removes the first eigenvector [10].

Figure 6 shows the values for energy and stretching on the FERET dataset.

4.2 Ordering Eigenvectors by Like-Image Difference

Ideally, two images of the same person should project to the same point in eigenspace.

Any difference between the points is unwanted variation. On the other hand, two images

of different subjects should project to points that are as widely separated as possible. To

31

0

100

200

300

400

500

600

700

800

900

1000

5 10 20 30 40 50 75 100 150 200 300 400 500

Number of Eigenvectors

Im
ag

es
 C

o
rr

ec
tl

y
C

la
ss

if
ie

d

s=0.22964

s=0.11031

s=0.05055

s=0.02738

s=0.01933

s=0.01426

s=0.00842

s=0.00600
s=0.00351

s=0.00235
s=0.00123

s=0.00070
s=0.00000

e=42.76%

e=55.42%

e=67.71%

e=73.79%

e=77.64%
e=80.42%

e=85.11%
e=88.15% e=92.09%

e=94.56%
e=97.50%

e=99.13%
e=100.00%

Figure 6. Example of Energy (e) and Stretching (s) dimension of a specific dataset.

capture this intuition and use it to order eigenvectors, we define a like-image difference

(ω) for each of the k eigenvectors [22].

To define ω , we will work with pairs of images of the same people projected into

eigenspace. Let X be training images and Y images of the corresponding people in the

test set ordered such that Xx j ∈ and Yy j ∈ are images of the same person. Define ω

as follows:

i

i
i λ

δ
ω = where ∑

=

−=
k

j
jj yx

1

δ (28)

32

When a difference between images that ought to match is large relative to the variance

for the dimension iλ then iω is large. Conversely, when the difference between images

that ought to match is small relative to the variance, iω is small. Since the goal is to

select eigenvectors that bring similar images close to each other, we rank the eigenvectors

in order of ascending iω and remove some number of the last eigenvectors.

4.3 Similarity & Distance Measures

Once images are projected into a subspace, there is the task of determining which images

are most like one another. There are two ways in general to determine how alike images

are. One is to measure the distance between the images in N-dimensional space. The

second way is to measure how similar two images are. When measuring distance, one

wishes to minimize distance, so two images that are alike produce a small distance.

When measuring similarity, one wishes to maximize similarity, so that two like images

produce a high similarity value. There are many possible similarity and distance

measures; I will discuss five.

1L norm: The 1L norm is also known as the city block norm or the sum norm. It sums

up the absolute difference between pixels[6,10]. The 1L norm of an image A and an

image B is:

∑
=

−=
N

i
ii BABAL

1
1),((29)

The 1L norm is a distance measure. Figure 7 shows the 1L distance between two

vectors.

33

2L norm: The 2L norm is also known as the Euclidean norm or the Euclidean distance

when its square root is calculated. It sums up the squared difference between pixels

[6,10,17]. The 2L norm of an image A and an image B is:

2

1
2)(),(∑

=

−=
N

i
ii BABAL (30)

The 2L norm is a distance measure. Figure 7 shows the 2L distance between two

vectors.

Covariance: Covariance is also known as the angle measure. It calculates the angle

between two normalized vectors. Taking the dot product of the normalized vectors

performs this calculation [10,17]. The covariance between images A and B is:

B
B

A
A

BA •=),cov((31)

 Covariance is a similarity measure. By negating the covariance value, it becomes a

distance measure [10]. Figure 7 shows the covariance between two vectors.

Mahalanobis distance: The Mahalanobis distance calculates the product of the pixels

and the eigenvalue of a specific dimension and sums all these products [10]. The

Mahalanobis distance between an image A and an image B is:

i

N

i
ii CBABAMah ∑

=

−=
1

),((32)

34

Figure 7. L1 distance, L2 distance and
covariance between two vectors

Figure 8. Two images with a negative
correlation and two that correlate well

where
i

iC
λ
1

= (33)

Mahalanobis distance is a distance measure.

Correlation: Correlation measures the rate of change between the pixels of two images.

It produces a value ranging from –1 to 1, where a value of –1 indicates the images are

opposites of each other and a value of 1 indicates that the images are identical [17]. The

correlation between an image A and an image B is:

∑
=

−−
=

N

i BA

BiAi BA
BAcorr

1

))((
),(

σσ
µµ

(34)

where Aµ is the mean of A and Aσ is the standard deviation of A . Figure 8 shows an

example of two images with a negative correlation and two that correlate well.

35

4.4 Are Similarity Measures the Same Inside and Outside of Eigenspace?

An eigenspace consisting of all eigenvectors associated with non-zero eigenvalues is an

orthonormal basis. An orthonormal basis is a set of vectors where the dot product of any

two distinct vectors is zero and the length of every vector is one. Orthonormal bases

have the property that any image that was used to create the orthonormal basis can be

projected into the full orthonormal basis with no loss of information. This means that the

image can be projected into the orthonormal basis and then converted back to the original

image. For example, let U be an orthonormal basis and let A be an image used to create

U . Then AUA T=′ , where A′ is the image A projected into U . A can be recovered

by multiplying by U , AUA ′= .

Given the fact that no information is lost when projecting specific images into an

orthonormal basis, do the values of the similarity measures change? The answer is that it

depends on the similarity measure. The 1L norm and correlation produce different values

in the two spaces. Mahalanobis distance is typically only used in conjunction with

eigenspace. The 2L norm and covariance do produce the same value in both spaces; I

will prove this.

Theorem 4.1: The 2L norm produces the same value on a pair of unprojected vectors

and on a pair of projected vectors.

),(),(22 BUAULBAL TT= (35)

36

Proof: Let U be an orthonormal basis. Let A be a vector such that AUA T=′ . Let B be

a vector such that BUB T=′ . Now the 2L norm of BA − is defined in equation (30) and

is the same as:

)()(BABA T −− (36)

The 2L norm of)(BA ′−′ is defined as:

),()()()(

)()()()()()()()(

)()()(),(

2

2

1

2

1
2

BALBABABA

BBABBAAA

BUUBAUUBBUUAAUUA

BUBUAUBUBUAUAUAU

BBABBAAA

BABABABAL

N

i
ii

T

TTTT

TTTTTTTT

TTTTTTTTTTTT

TTTT

T
N

i
ii

=−=−−=

−−−=

−−−=

−−−=

′′−′′−′′−′′=

′−′′−′=′−′=′′

∑

∑

=

=

Hence, the 2L norm produces the same value on unprojected vectors and on projected

vectors.

Theorem 4.2: Covariance produces the same value on a pair of unprojected vectors and

on a pair of projected vectors.

),cov(),cov(BUAUBA TT= (37)

Proof: Let U be an orthonormal basis. Let A be a vector such that AUA T=′ and

AUA ′= . Let B be a vector such that BUB T=′ and BUB ′= . The covariance of A and

B is defined in equation (31) and the covariance of A′ and B′ is defined as:

() ()
BUAU

BUA
BUAU

BAU
BUAU

BAU
BA
BA

B
B

A
A

BA
TT

T

TT

TT

TT

T ′
=

′
=

′•
=

′′
′•′

=
′
′

•
′
′

=′′),cov((38)

It is known that BUB ′= , so

37

BUAU
BA

BA
TT

T

=),cov((39)

By theorem 4.1 AAUA T ′== and BBUB T ′== . So,

),cov(),cov(BA
BA
BA

BA
T

==′′ (41)

Hence, covariance produces the same value on unprojected vectors and on projected

vectors.

I will illustrate how each measure behaves with an example. Consider two vectors,
















=
















=

2
5
7

,
4
5
1

BA . Project these two points into the orthonormal basis
















−

−
=

6779.06465.03499.0
6854.03837.06189.0

2659.06594.07033.0
U .
















=
































−

−
==′

0.4497-
3.8453
5.1973

4
5
1

6779.06465.03499.0
6854.03837.06189.0

2659.06594.07033.0
AUA T
















=
































−

−
==′

0.2103-
1.4040-
8.7169

2
5
7

6779.06465.03499.0
6854.03837.06189.0

2659.06594.07033.0
BUB T

Figure 9 shows points BABA ′′ and ,, .

2L norm: The 2L norm produces the same value on unprojected vectors and on

projected vectors. Examine the example.

38

Figure 9. Plot of points A, B, A’ and B’.

The 2L norm of BA − is:

() () () ()

404063

245-57-1)(222
2

1

2
2

=++=

−++=−=− ∑
=i

BABAL

The 2L norm of BA ′−′ is:

() () ()() () ()()

0.400.057327.555212.3876

0.2103-0.4497-1.4040--3.84538.7169-5.1973)(222
2

1

2
2

=++=

−++=′−′=′−′ ∑
=i

BABAL

This example shows that for this specific case they are the same, and the above proof

covers the general case.

39

Covariance: Covariance produces the same value on unprojected vectors and on

projected vectors. Examine the same example.

The covariance between A and B is:

[] 0.6989
2265.0
5661.0
7926.0

6172.07715.01543.0

0.2265
0.5661
0.7926

0.6172
0.7715
0.1543

8.8318

2
5
7

6.4807

4
5
1

2
5
7
2
5
7

4
5
1
4
5
1

),cov(

=















=
















•
















=

















•
















=
















•
















=•=
B
B

A
A

BA

The covariance between A′ and B′ is:

[] 0.6989
0.0238-
0.1590-

0.9870
0.0694-0.59330.8020

0.0238-
0.1590-

0.9870

0.0694-
0.5933
0.8020

8.8318

0.2103-
1.4040-
8.7169

6.4807

0.4497-
3.8453
5.1973

0.2103-
1.4040-
8.7169
0.2103-
1.4040-
8.7169

0.4497-
3.8453
5.1973
0.4497-

3.8453
5.1973

),cov(

=















=
















•
















=

















•
















=
















•
















=
′
′

•
′
′

=′′
B
B

A
A

BA

This example shows that for this specific case they are the same and the above proof

covers the general case.

1L norm: The 1L norm does not produce the same value on unprojected vectors and on

projected vectors. Intuitively, two points that are located diagonal to each other will

40

produce a larger 1L distance than the same points rotated to be horizontal to each other.

This can be proven by an example.

The 1L norm of BA − is:

8206245571)(
2

1
1 =++=−+−+−=−=− ∑

=i
ii BABAL

The 1L norm of BA ′−′ is:

9.00830.23935.24933.5197

(-0.2103)-(-0.4497)(-1.4040)-3.84538.7169-5.1973

)(
2

1
1

=++=

++=

′−′=′−′ ∑
=i

ii BABAL

As you can see, these two norms are not the same; hence the 1L norm does not produce

the same value on unprojected vectors and on projected vectors.

Correlation: Correlation does not produce the same value on unprojected vectors and on

projected vectors. Intuitively, Correlation is effected by the mean of the images. As

images are rotated their mean changes, therefore their correlation changes. This can be

proven by an example.

The correlation between A and B is:

3.3333=Aµ , 4.6667=Bµ , 2.0817=Aσ , 2.5166=Bσ

41

()() ()() ()()

()

-1.2726
5.2387
6.6667-

5.2387
-1.77780.55565.4444-

5166.2*0817.2
-2.6667*0.66670.3333*1.66672.3333*2.3333-

5166.2*0817.2
6667.423333.34

5166.2*0817.2
6667.453333.35

5166.2*0817.2
6667.473333.31

))((
),(

1

==
++

=

++
=

−−
+

−−
+

−−
=

−−
= ∑

=

N

i BA

BiAi BA
BAcorr

σσ
µµ

The correlation between A′ and B′ is:

5.53102.9485,2.3675,2.8643, BAB ==== ′′′′ σσµµ A

.

()() ()()

()()

() ()

1.2053
16.3082
19.6559

16.3082
8.5429-3.699814.8128

5310.5*9485.2
-2.5779*3.3140-3.7715-*0.98106.3494*2.3330

5310.5*9485.2
2.3675-0.2103-2.8643-0.4497-

5310.5*9485.2
2.3675-1.4040-2.864-3.8453

5310.5*9485.2
2.3675-8.71692.8643-5.1973

))((
),(

1

==

++
=

++
=

+

+

=
−′−′

=′′ ∑
= ′′

′′
N

i BA

BiAi BA
BAcorr

σσ
µµ

These two correlations are not the same; hence the correlation does not produce the same

value on an unprojected vector and on a projected vector.

Mahalanobis distance: Typically the Mahalanobis distance is calculated on vectors

projected into eigenspace, since it uses the eigenvalues to weight the contribution along

each axis. To illustrate Mahalanobis distance as measured in eigenspace, I will calculate

the Mahalanobis distance between the projected vectors A′ and B′ .

0.0808
12.3788

1
2345.153

11

1
1 ====

λ
C

42

0.1976
5.0606

1
6096.25
11

2
2 ====

λ
C

0.9301
1.0751

1
1559.1
11

3
3 ====

λ
C

() 2.68180.08801.0668-3.6606
0.9301)*-0.2103*-0.4497()1976.0*-1.4040*3.8453()0808.0*8.7169*5.1973(

),(
1

−=++−=
++−=

′′−=′′ ∑
=

i

N

i
ii CBABAMah

43

5. Experiments

I performed four experiments, each on one of two datasets. The first experiment

combines similarity measures in an attempt to improve performance. The second

experiment tests whether performance improves when eigenvectors are ordered by like-

image difference in eigenspace projection. The third experiment compares many

variations of eigenspace projection and Fisher discriminants on the Cat & Dog dataset.

The fourth experiment compares several variations of eigenspace projection and Fisher

discriminants on the FERET dataset.

5.1 Datasets

The Cat & Dog dataset and the FERET dataset are used for the experiments. The FERET

dataset is restructured for some of the experiments.

5.1.1 The Cat & Dog Dataset

The Cat & Dog dataset was created by Mark Stevens and is available through the

Computer Vision group at Colorado State University. The original dataset of 100, 64x64

pixel, grayscale images consisted of 50 cat images and 50 golden retriever images. I

collected 50 additional cat images and 50 additional images of different types of dogs.

Each image shows the animal’s head and is taken directly facing the animal’s face.

Figure 10 shows example images from the Cat & Dog dataset. This is a 2-class

classification problem, since each of the test images is either a cat or a dog.

44

Figure 10. Sample images from the Cat & Dog
dataset

Figure 11. Sample images from the FERET
dataset

5.1.2 The FERET Dataset

Jonathan Phillips at the National Institute of Standards and Technology made the FERET

dataset available to our department [10,12,13]. The FERET database contains images of

1196 individuals, with up to 5 different images captured for each individual. The images

are separated into two sets: gallery images and probes images. Gallery images are

images with known labels, while probe images are matched to gallery images for

identification. The database is broken into four categories:

FB: Two images were taken of an individual, one after the other. One image is of the

individual with a neutral facial expression, while the other is of the individual with a

different expression. One of the images is placed into the gallery file while the other is

used as a probe. In this category, the gallery contains 1196 images, and the probe set

has 1195 images.

45

Duplicate I: The only restriction of this category is that the gallery and probe images

are different. The images could have been taken on the same day or 1 ½ years apart.

In this category, the gallery consists of the same 1196 images as the FB gallery while

the probe set contains 722 images.

fc: Images in the probe set are taken with a different camera and under different

lighting than the images in the gallery set. The gallery contains the same 1196 images

as the FB & Duplicate I galleries, while the probe set contains 194 images.

Duplicate II: Images in the probe set were taken at least 1 year after the images in the

gallery. The gallery contains 864 images, while the probe set has 234 images.

Figure 11 shows example images from the FERET dataset.

5.1.3 The Restructured FERET Dataset

I restructured a portion of the FERET dataset so that there are four images for each of

160 individuals. Two of the pictures are taken on the same day, where one picture is of

the individual with a neutral facial expression and the other is with a different expression.

The other two pictures are taken on a different day with the same characteristics. The

purpose of this restructuring is to create a dataset with more than one training image of

each individual to allow testing of Fisher discriminants.

5.2 Bagging and Combining Similarity Measures

Different similarity measures have been discussed, but up until this point they have been

examined separately. I will now examine combining some of the similarity measures

46

together in the hopes of improving performance. The following four similarity measures

are examined: 1L norm (29), the 2L norm (30), covariance (31), and the Mahalanobis

distance (32). I test both simple combinations of the distance measures and “bagging”

the results of two or more measures using a voting scheme [2,3,9].

1 5.2.1 Adding Distance Measures

A simple way to combine distance measures is to add them. In other words, the distance

between two images is defined as the sum S of the distances according to two or more

traditional measures:

hh aaaaS ++= ...),...,(11 (41)

Using S, all combinations of base metrics (1L , 2L , covariance, Mahalonobis) are used to

select the nearest gallery image to each probe image. The percentage of images correctly

recognized using each combination on the Duplicate I probe set, is shown in Table 5,

along with the recognition rates for the base measures themselves. Of the four base

measures, there appears to be a significant improvement with the Mahalanobis distance.

On the surface, 42% seems much better than 33%, 34% or 35%. The best performance of

any combined measure is 43% for the S(1L , Mahalanobis) and S(1L ,covariance,

Mahalanobis) combinations. While higher, the difference does not appear significant.

I used McNemar’s test, which simplifies to the sign test [22,24], to calculate the

significance of differences in these results. The McNemar’s test calculates how often one

algorithm succeeds while the other algorithm fails. I formulated the following

hypotheses to test significant difference in the previous results.

47

Table 3. Results of McNemar’s test among base measures.

Table 4. Results of McNemar’s test of the S(1L , Mahalanobis) and S(1L ,covariance, Mahalanobis)
combinations compared to the Mahalanobis distance

Algorithms 1 Algorithm 2 Success/Success Success/Failure Failure/Success P<
Mahalanobis S(L1+Mahalanobis) 282 23 26 0.388
Mahalanobis S (L1, Ang, Mah) 280 25 29 0.342

1. Of the four base measures, Mahalanobis distance outperforms all others, 42% versus

33%, 34% or 35%.

2. The performance of any combined measures is not statistically better than the

performance of the base measures. 43% for the S(1L , Mahalanobis) and

S(1L ,covariance, Mahalanobis) combinations versus 42% for Mahalanobis distance.

Table 3 shows the results of McNemar’s test performed for each pair of base measures.

Note that Mahalanobis distance always fails less often than the other similarity measures,

indicated by P < 0.00001. Yet, no other measure is found to be different.

Table 4 shows the results of McNemar’s test of the S(1L , Mahalanobis) and

S(1L ,covariance, Mahalanobis) combinations compared to the Mahalanobis distance.

Here no significant difference is found between these algorithms, indicating that when

they do differ on a particular image each is equally likely to identify the image correctly.

Algorithms 1 Algorithm 2 Success/Success Success/Failure Failure/Success P<
L1 L2 219 34 20 0.038
L1 Angle 214 39 32 0.238
L1 Mahalanobis 220 33 85 0.00001
L2 Angle 224 15 22 0.162
L2 Mahalanobis 214 25 91 0.00001
Angle Mahalanobis 225 21 80 0.00001

48

Table 5. Results of adding similarity measures

Classifier Duplicate I
L1 0.35
L2 0.33

Covariance 0.34
Mahalanobis 0.42

S (L1, L2) 0.35

S (L1, Covariance) 0.39

S (L1, Mahalanobis) 0.43

S (L2, Covariance) 0.33

S (L2, Mahalanobis) 0.42
S (Angle, Covariance) 0.42

S (L1, L2, Covariance) 0.35
S (L1, L2, Mahalanobis) 0.42

S (L1, Cov, Mah) 0.43
S (L2, Cov, Mah) 0.42

S (L1, L2,Cov, Mah) 0.42

Table 6. Results of bagging similarity
measures

Classifier Dup I FB
L1 0.35 0.77
L2 0.33 0.72

Cov 0.34 0.70
Mah 0.42 0.74

Bagging 0.37 0.75
Bagging (best 5) 0.38 0.78

Bagging (Weighted) 0.38 0.77

Interestingly, the performance of the combined measures is never less than the

performance of their components evaluated separately. For example, the performance of

S(1L , 2L) is 35%; this is better than the performance of 2L (33%) and the same as 1L

(35%). These results suggest that 1L and 2L are identifying the same images correctly;

hence combining measures does not identify any additional images correctly.

5.2.2 Distance Measure Aggregation

The experiment above tested only a simple summation of distance measures; one can

imagine many weighting schemes for combining distance measures that might

outperform simple summation. Rather than search the space of possible distance measure

combinations, however, I took a cue from recent work in machine learning that suggests

the best way to combine multiple estimators is to apply each estimator independently and

combine the results by voting [2,3,9].

49

For face recognition, this implies that each distance measure is allowed to vote for the

image that it believes is the closest match for a probe. The image with the most votes is

chosen as the matching gallery image. Voting is performed three different ways.

Bagging: Each classifier is given one vote as explained above.

Bagging, best of 5: Each classifier votes for the five gallery images that most closely

match the probe image.

Bagging, weighted: Classifiers cast five votes for the closest gallery image, four votes

for the second closest gallery image, and so on, casting just one vote for the fifth closest

image.

Table 6 shows the performance of voting for the Duplicate I and FB probe sets. On the

Duplicate I data, Mahalanobis distance alone does better than any of the bagged

classifiers: 42% versus 37% and 38%. On the simpler FB probe set, the best performance

for a separate classifier is 77% (for 1L), and the best performance for the bagged

classifiers is 78%. The McNemar’s test confirms that this is not a significant

improvement. In the next section, I explore one possible explanation for this lack of

improvement when using bagging.

2 5.2.3 Correlating Distance Metrics

As described in [2], the failure of voting to improve performance suggests that the four

distance measures share the same bias. To test this theory, I correlate the distances

calculated by the four measures over the Duplicate I probe set. Since each measure is

50

defined over a different range, Spearman rank correlation is used [14]. For each probe

image, the gallery images are ranked by increasing distance to the probe. This is done for

each pair of distance measures. The result is two rank vectors, one for each distance

measure. Spearman’s Rank Correlation is the correlation coefficient for these two

vectors.

Table 7 shows the average correlation scores. 2L , covariance and Mahalanobis all

correlate very closely to each other, although 1L correlates less well to covariance and

Mahalanobis. This suggests that there might be some advantage to combining 1L with

covariance or Mahalanobis, but that no combination of 2L , covariance or Mahalanobis is

very promising. This is consistent with the scores in Table 5, which show that the

combinations S(1L , covariance) and S(1L , Mahalanobis) outperform these classifiers

individually.

I also constructed a list of images in the FB probe set that were grossly misclassified, in

the sense that the matching gallery image is not one of the ten closest images according to

one or more distance measures. A total of 179 images are poorly identified by at least

one distance measure.

Table 8 shows the number of images that are poorly identified by all four distance

measures, three distance measures, two distance measures, and just one distance measure.

This table shows that there is shared bias among the classifiers, in that they seem to make

gross mistakes on the same images. On the other hand, the errors do not overlap

51

Table 7. Correlation between similarity
measures.

L1 L2 cov Mah
L1 1 0.46057 0.38873 0.38749
L2 0.46057 1 0.615479 0.498865
cov 0.38873 0.615479 1 0.582534
Mah 0.38749 0.498865 0.582534 1

Table 8. Number of images similarly
identified poorly

Images commonly
poorly identifed

of images
out of 179

%
images

by 4 classifiers 46 25.7
by 3 classifiers 48 26.82
by 2 classifiers 34 18.99
by 1 classifier 51 28.29

completely, suggesting that some improvement might still be achieved by some

combination of these distance measures.

5.3 Like-Image Difference on the FERET dataset

In order to test the performance of like-image ordering of eigenvectors compared to

ordering by corresponding eigenvalue, I performed two experiments. The first

experiment is on the original FERET dataset and compares results to those of Moon &

Phillips. The second experiment is on the restructured dataset, where 10 trials are run

and training/test data is clearly separated.

For each of the 1195 probe/gallery matches in the FB probe set of the original FERET

dataset, I calculate the difference between the probe and gallery image in eigenspace.

These differences are summed together and then divided by the eigenvalue to calculate

the like-image difference. The smaller this number is, the better the eigenvector should

be at matching images. The top N eigenvalues are selected according to the like-image

difference measure, and the FB probe set is reevaluated using the 1L norm. Figure 12

shows the performance scores of the reordered eigenvalues compared to the performance

of the eigenvalues ordered by eigenvalue, as performed by Moon & Phillips. Table 9

shows the number of images correctly identified by each ordering method and the results

52

0

100

200

300

400

500

600

700

800

900

1000

5 10 20 30 40 50 75 100 150 200 300 400 500
Number of Eigenvectors

N
u

m
b

er
 Im

ag
es

 C
o

rr
ec

tl
y

Id
en

ti
fi

ed

Ordered by Eiegenvalues

Ordered by like-image Difference

Figure 12. Graph of the performance when ordering by eigenvalues vs. when ordered by like-image
difference

Table 9. Correctly identified images by ordering of eigenvectors by eigenvalue and by like-image
difference.

Evs

L1
Sorted
by Evs

L1 Sorted by
Like-Image

Diff. S/S S/F F/S P <
5 273 308 203 70 105 0.0050

10 523 550 472 51 78 0.0109

20 687 720 659 28 61 0.0003
30 765 787 748 17 39 0.0023

40 821 825 796 25 29 0.3417

50 850 856 839 11 17 0.1725

75 898 905 886 12 19 0.1405

100 916 909 903 13 6 0.0835

150 930 931 925 5 6 0.5000

200 923 929 921 2 8 0.0547

300 915 916 913 2 3 0.5000

400 915 917 912 3 5 0.3633

500 913 913 913 0 0 1.0000

53

of McNemar’s test on the results. Note that for less than 40 eigenvectors McNemar’s test

indicates that like-image difference ordering of eigenvectors fails less than eigenvectors

ordered by corresponding eigenvalue.

Reordering by the like-image difference improves performance for small numbers of

eigenvectors (up to the first 40). This suggests that the like-image distance measure

should be used when selecting only a few eigenvectors. When more than 40 eigenvectors

are selected, there is enough overlap between the two orderings that no significant

difference in performance occurs; either method of ordering eigenvectors can be used.

To further test the performance of like-image difference, I ran an experiment on the

restructured FERET dataset. For this experiment, 10 trials are run with each of four

algorithms (eigenspace projection using 1L norm, 2L norm, covariance and Mahalanobis

distance), but the training and test images are selected randomly. For each individual,

two images taken on the same day are randomly selected for training data. One image of

the remaining two images, of the final 140 individuals, is randomly selected as test

data. Only 140 images are used as test data because the like-image difference algorithm

requires 20 additional training images. Therefore, in each trial 320 training images and

140 test images are used. I tested eigenspace projection by removing the last 40% of the

eigenvectors and by reordering the eigenvectors by like-image difference and then

removing the last 40%. Table 10 shows the results of these tests. The results of these

tests do not show an improvement through the reordering of eigenvectors by like-image

difference. Thus, like-image difference ordering of eigenvectors does not improve

performance.

54

Table 10. Results of ordering eigenvectors ordering eigenvectors by eigenvalue vs. by like-image
difference.

Remove Last 40% (127) of the Reorder by Significant Difference and
Eigenvectors remove last 40% (127) of the Eigenvectors

Trial # L1 L2 Angle Mahalanobis L1 L2 Angle Mahalanobis
1 69 59 67 89 68 63 65 85
2 70 61 62 82 68 60 62 83
3 76 54 71 89 76 59 70 86
4 73 53 67 83 71 61 66 84
5 71 62 58 83 70 54 59 84
6 72 50 61 89 67 64 61 79
7 75 55 66 91 72 63 66 85
8 67 61 61 91 69 53 61 83
9 71 59 60 86 72 56 59 79
10 73 63 66 92 73 61 66 86

Average 71.7 57.7 63.9 87.5 70.6 59.4 63.5 83.4

5.4 Cat & Dog Experiments

Two hypotheses prompted experiments on the Cat & Dog dataset. The first hypothesis is

that Fisher discriminants will perform better than eigenspace projection. I believed that

since the Cat & Dog dataset is a two-class problem that classifies an image as either a cat

or a dog, Fisher discriminants will clearly separate the two classes. The second

hypothesis is that the combination of eigenspace projection and Fisher discriminants will

outperform all other algorithms. By testing multiple variations of the eigenspace

projection and combination eigenspace projection/Fisher discriminants algorithms, I

introduce a third hypothesis that for each of these algorithms one of the variations will

perform better than the others.

The tests on the Cat & Dog data are set up according to an approach described by

Salzberg [15]. The 200 cat and dog images are separated into 10 datasets. Each dataset

contains 10 cat images and 10 dog images. A single trial is trained on nine of the datasets

and tested with the remaining dataset. Therefore, ten trials are run on each algorithm,

55

using each dataset as the test dataset once. Table 11 shows the number of images

correctly identified (out of 20) for all of the algorithms run on the Cat & Dog dataset.

An ANOVA test, performed on the results of the six variations of the eigenspace

projection algorithm, indicates with P < 0.97, that there is no significant difference

between the variations. An ANOVA test is also performed on the results of the six

variations of the combination eigenspace projection/Fisher discriminants algorithm.

Again, with P < 0.99, no significant difference is found between the variations.

To test the two original hypotheses, first a significant difference must be established

between the four algorithms. Since a best variation of the eigenspace projection or

combination eigenspace projection/Fisher discriminants algorithms could not be

determined, I choose the variations with the largest mean number of images correctly

identified. An ANOVA test is performed, and with P < 0.25 no significant difference is

found.

At this time no further analysis can be performed, since no statistically significant

difference can be established between any of the algorithms.

Since no statistically significant difference can be found among any of the algorithms on

the Cat & Dog data, all three of the hypotheses are rejected. No specific variation of the

eigenspace projection is found to perform better than any of the other variations and no

variation of the combination eigenspace projection/Fisher discriminants is found to

56

outperform any of the other variations. Fisher discriminants does not perform better than

eigenspace projection, since no difference is found between the two algorithms. The

combination of eigenspace projection and Fisher discriminants does not outperform

Fisher discriminants. Again, no difference is found between the two algorithms.

The fact that no algorithm outperforms the rest indicates that the cat and dog images

cannot be clearly separated. Furthermore, it is interesting to note that on average, many

more dogs are incorrectly identified than cats. This could simply be a result of the fact

that dogs come in many shapes and sizes, but all cats look generally the same just

different colors. This phenomenon can also be a result of biases in the data. Originally,

the dataset contained only images of golden retrievers; I added 50 additional images of

different types of dogs. Therefore, the dataset may be biased to golden retriever and dogs

that look like golden retrievers and more likely to misidentify dogs that do not look like

golden retrievers.

5.5 FERET Experiments

Similar to the Cat & Dog experiments, three hypotheses spurred the FERET experiments.

1. Eigenspace projection will outperform Fisher discriminants. Since the FERET

dataset contains 160 classes and only two images per class, I believe Fisher

discriminants will have difficulty discriminating the data.

2. The combination of eigenspace projection and Fisher discriminants will outperform

all other algorithms.

57

3. One of the variations of eigenspace projection and combination eigenspace

projection/Fisher discriminants will perform better than the other variations.

The setup of the FERET experiments differs from the setup of the Cat & Dog

experiments. Here 10 trials are run on each algorithm, but the training and test images

are selected randomly. For each individual, two images taken on the same day are

randomly selected for training data. One image of the remaining two images, of the final

140 individuals, is randomly selected as test data. Only 140 images are used as test data

because the like-image difference algorithm requires 20 additional training images.

Therefore, for each trial 320 training images and 140 test images are used. Table 12

shows the number of images correctly identified for all of the algorithms run on the

FERET dataset.

An ANOVA test is performed on the six variations of eigenspace projection and a

significant difference, with a P < 0.00001, is found between the variations. To choose a

best performer of these variations, I sort the variations by mean number of images

correctly identified. A one-tail two-sample t-test assuming unequal variances indicates

that eigenspace projection removing the first eigenvector outperforms all other variations

of eigenspace projection, with P < 0.032.

An ANOVA test is also performed on the six variations of the combination eigenspace

projection/Fisher discriminants. The six variations are found to be significantly different

with P < 0.00001. The variations are sorted by mean number of images correctly

58

59

identified, and a one-tail two-sample t-test assuming unequal variances indicates that

eigenspace projection, resorting eigenvectors by like-image difference and removing the

last 40% of the eigenvectors combined with Fisher discriminants outperforms all the

other variations, with P < 0.003.

Utilizing the two winning variations from above, the four algorithms are compared. First,

a single actor ANOVA test is performed to establish significant difference between the

algorithms. P < 0.00001 indicates a difference among the algorithms. To test the first

hypothesis a two-tail two-sample t-test assuming unequal variances is performed on

eigenspace projection with the first eigenvector removed and Fisher discriminants. P <

0.002 indicates that Fisher discriminants outperformed eigenspace projection. To test my

second hypothesis, a one-tail two-sample t-test assuming unequal variances is performed

on eigenspace projection with the first eigenvector removed and eigenspace projection

resorting eigenvectors by like-image difference and removing the last 40% of the

eigenvectors combined with Fisher discriminants. P < 0.005 indicates that the

combination of eigenspace projection and Fisher discriminants outperforms all other

algorithms.

Statistically significant differences are found among the algorithms on the FERET data.

Specifically, eigenspace projection removing the first eigenvector outperforms all other

eigenspace projection algorithms and eigenspace projection resorting eigenvectors by

like-image difference and removing the last 40% of the eigenvectors combined with

Fisher discriminants outperforms all other eigenspace projection/Fisher discriminants

combination algorithms. Therefore, the third hypothesis is confirmed. My first

60

hypothesis is rejected because eigenspace projection does not outperform Fisher

discriminants, instead the exact opposite is true and Fisher discriminants outperforms

eigenspace projection. My second hypothesis is accepted since a variation of the

combination of eigenspace projection and Fisher discriminants outperforms all other

algorithms.

The fact that Fisher discriminants performs well on the FERET dataset indicates that as

few as two images in a class is enough to separate classes. Furthermore, a larger number

of classes does not appear to reduce Fisher discriminants ability to separate classes.

61

6. Conclusion

In reviewing the results of the experiments, three conclusions can be drawn. Combining

distance measures in any way does not improve performance on the original FERET

dataset. Although like-image difference sorting of eigenvectors seemed like a good idea,

it does not improve performance on the FERET dataset. Finally, the most interesting

conclusion is that the algorithms and variations of algorithms perform very differently on

the Cat & Dog dataset and on the FERET dataset. While no significant difference is

found among any of the algorithms on the Cat & Dog dataset, differences are found

among the algorithms in the FERET dataset and best performing algorithms can be

selected.

One possible reason for the lack of significant difference among algorithms in the Cat &

Dog dataset is the size of the test set. For each trial 20 of 200 images are used for testing

while 180 images are used for training. Since the size of the test set is small the

percentage of correctly identified images drops more quickly than if a larger number of

test images are used as in the FERET dataset. Given a chance to run further experiments

on the Cat & Dog dataset I would modify the experiment setup to use more test images

and fewer training images.

Although no difference is found among the algorithms for the Cat & Dog dataset, in the

FERET dataset a best performer is clear. The algorithm that first projects images into

62

eigenspace and then projects them onto their Fisher basis vectors outperforms all other

algorithms. It is interesting to note that these tests are performed over ten trials, where in

each trial test and training images are randomly selected.

6.1 Experiment Summary

The experiments performed in this work stand out from similar experiments. They are

different because they followed a specific methodology. Before experiments are

performed hypotheses are formed. Experiments are performed following know

approaches. After experiments are performed statistical tests such as the McNemar’s test,

ANOVA test, and t-test are used to confirm or reject the hypotheses. Below is a

summary of the hypothesis, tests, and conclusions from the experiments.

Hypothesis #1: Adding raw similarity measure scores improves performance.

Tests: In section 5.2.1 raw similarity measure scores are combined and their performance

is compared to the performance of the raw similarity measures. McNemar’s test is used to

identify significant differences among the algorithms.

Conclusion: Adding raw similarity measure scores does not improve performance.

Hypothesis #2: Bagging similarity measures improves performance.

Tests: In section 5.2.2 similarity measures are bagged and their performance is compared

to the performance of the raw similarity measures. McNemar’s test is used to identify

significant differences among the algorithms.

Conclusion: Bagging similarity measures does not improve performance.

63

Hypothesis #3: The four distance measures are identifying the same images correctly and

the same images incorrectly.

Tests: Two tests are performed in section 5.2.3. The similarity measures are correlated to

each other and images that are grossly misclassified by each measure are compared.

Conclusion: Although there is some overlap among similarity measures, they do not

overlap completely.

Hypothesis #4: Resorting the original FERET dataset by like-image difference improves

performance.

Tests: In section 5.3, the eigenvectors used by Moon & Phillips are resorted by like-

image difference and compared to the Moon & Phillips results by the McNemar’s test.

Conclusion: Like-image difference improves performance when a small number of

eigenvectors are used.

Hypothesis #5: Resorting the restructured FERET dataset by like-image difference and

testing on different images improves performance.

Tests: In section 5.3, algorithms are run on the restructured dataset sorting by eigenvalue

and by like-image difference. Ten trials are run each randomly selecting test and training

images.

Conclusion: Like-image difference does not improve performance when test and training

data is separated.

64

Hypothesis #6: One of the variations of eigenvector selection outperforms the others on

the Cat & Dog dataset.

Tests: In section 5.4, two ANOVA tests are performed, one on the six variations of

eigenspace projection and one on the six variations of Fisher discriminants where images

are first project into eigenspace.

Conclusion: No variation of eigenvector selection outperforms the others on the Cat &

Dog dataset.

Hypothesis #7: Fisher discriminants will perform better than eigenspace projection on the

Cat & Dog dataset.

Tests: In section 5.4, an ANOVA test is performed on the four algorithms. No significant

difference is identified among the algorithms.

Conclusion: Fisher discriminants does not perform better than eigenspace projection on

the Cat & Dog dataset.

Hypothesis #8: Fisher discriminants where images are first projected into eigenspace

outperforms all other algorithms on the Cat & Dog dataset.

Tests: In section 5.4, an ANOVA test is performed on the four algorithms. No significant

difference is identified among the algorithms.

Conclusion: Fisher discriminants where images are first projected into eigenspace does

not outperform all other algorithms on the Cat & Dog dataset.

65

Hypothesis #9: One of the variations of eigenvector selection outperforms the others on

the FERET dataset.

Tests: In section 5.5, two ANOVA tests are performed, one on the six variations of

eigenspace projection and one on the six variations on Fisher discriminants where images

are first project into eigenspace.

Conclusion: In the case of eigenspace projection, removing the first eigenvector

outperforms all other variations on the FERET dataset. In the case of combining

eigenspace projection and Fisher discriminants, resorting eigenvectors by like-image

difference and removing the last 40% of the eigenvectors outperforms all the other

variations on the FERET dataset.

Hypothesis #10: Eigenspace projection outperforms Fisher discriminants on the FERET

dataset.

Tests: In section 5.5, an ANOVA test is performed on the four algorithms. Significant

difference is identified among the algorithms. A two-tailed t-test is performed on

eigenspace projection and Fisher discriminants.

Conclusion: Eigenspace projection does not outperform Fisher discriminants on the

FERET dataset. In fact the exact opposite is true, Fisher discriminants outperforms

eigenspace projection.

Hypothesis #11: Fisher discriminants where images are first projected into eigenspace

outperforms all other algorithms on the FERET dataset.

66

Tests: In section 5.5, an ANOVA test is performed on the four algorithms. Significant

difference is identified among the algorithms. A t-test is performed on Fisher

discriminants and the other algorithms.

Conclusion: Fisher discriminants where images are first projected into eigenspace

outperforms all other algorithms on the FERET dataset.

3 6.2 Future Work

I would like to enlarge the Cat & Dog dataset to contain more than two classes. There

are 50 images of horses available with the cat and dog images. I would like to add those

images along with another set of images of a different type of animal. The tests

performed on the Cat & Dog dataset could then be run on a dataset with three classes and

a dataset of four classes and performance could be compared.

I would also like to rerun the tests on the FERET dataset, where only one image of each

individual would be in the training data. I would expect performance to drop greatly on

this dataset, especially with Fisher discriminants.

Although like-image difference selection of eigenvectors did not improve performance on

the FERET dataset, I still believe that some combination of eigenvector selection will

improve performance. Therefore, I would like to continue to explore possible algorithms

for eigenvector selection that will improve classification performance within subspaces.

67

Throughout my experiments I try to use statistical tests to support my results. In the

future I would like to rerun many of the experiments performed by Moon and Phillips

[10] and run statistical tests such as the McNemar’s test to examine significant difference

among the results.

68

4 Appendix I, Symbol Glossary

ix = Raw training image
X = Data matrix of raw training images
Ω = Covariance matrix

ix = Mean centered training image
X = Data matrix of mean centered training images
m = Mean image
P = Number of training images
N = Number of pixel sin the training images
V = Eigenvectors

 Λ = Eigenvalues
iv = ith eigenvector

iλ = ith eigenvalue
ix~ = Projected centered training image
iy = Raw test image
iy = Mean centered test image
iy~ = Projected centered test image

Ω′ = Modified covariance matrix
V ′ = Eigenvectors of Ω′
Λ′ = Eigenvalues of Ω′
V̂ = VX ′
C = Number of classes

iS = Within class scatter matrix for ith class

WS = Within class scatter matrix

BS = Between class scatter matrix

in = Number of images in ith class
ix̂ = Class mean centered image

U = Any orthonormal basis
im̂ = Centered class mean

im~ = Projected centered class mean

ie = Energy dimension

is = Stretching dimension
ω = Like-image difference

69

References

[1] Belhumeur P., Hespanha J., and Kriegman D. (1997), Eigenfaces vs. Fisherfaces:
Recognition Using Class Specific Linear Projection, IEEE Trans. PAMI, 19(7):711-
720.

[2] Breiman L. (1994), Bagging Predictors. Technical Report No. 421, Dept. of
Statistics, University of California (Berkeley).

[3] Dietterich T. and Bakiri G. (1995), Solving Multiclass Learning Problems via Error-
Correction Output Code, Journal of Artificial Intelligence Research, 2:263-286.

[4] Duda R. and Hart P., Pattern Classification and Scene Analysis, New York: John
Wiley & Sons, 1973.

[5] Fisher, R.A. (1936), The use of Multiple Measures in Taxonomic Problems, Ann.
Eugenics, 7:179-188.

[6] Horn R. and Johnson C., Matrix Analysis, New York: Cambridge University Press,
1985.

[7] Kirby M. (2000), Dimensionally of Reduction and Pattern Analysis: an empirical
approach. Under contract with Wiley.

[8] Kirby M. and Sirovich L. (1990), Application of the Karhunen-Loeve Procedure for
the Characterization of Human Faces, IEEE Trans. PAMI, 12(1):103-108.

[9] Kong E.B. and Dietterich T. (1995), Why error-correcting output coding works with
decision trees, Technical Report, Dept. of Computer Science, Oregon State
University (Corvalis).

[10] Moon H. and Phillips J., Analysis of PCA-based Faced Recognition Algorithms. In
Boyer K. and Phillips J., editors, Empirical Evaluation Techniques In Computer
Vision, IEEE Computer Society Press, Los Alamitos, CA, 1998.

[11] Nayar S., Nene S., and Murasr H. (1996), Real-Time 100 Object Recognition
System. Proceedings of ARPA Image Understanding Workshop.

70

[12] Phillips J., Moon H., Rizvi S., and Rauss P., The FERET Evaluation. In Wechslet
H., Phillips P., Bruse, V., Fogeliman Soulie F., and Hauhg T., editors, Face
Recognition: From Theory to Application, Springer-Verlag, Berlin, 1998.

[13] Phillips J., Moon H., Rizvi S., and Rauss P. (1999), The FERET Evaluation
Methodology for Face-Recognition Algorithms. NIST Technical Report NISTIR
6264.

[14] Press W., Teukolsky S., Vetterling W., and Flannery B., Numerical Recipes in C,
The Art of Scientific Computing, New York: Cambridge University Press, Inc.,
1988.

[15] Salzberg S., (1997) On Comparing Classifiers: Pitfalls to Avoid and a
Recommended Approach. Data mining and Knowledge Discovery, 1, 317-327.

[16] Sirovich L. and Kirby M. (1987), A low-dimensional procedure for the
characterization of human faces, The Journal of the Optical Society of America,
4:519-524.

[17] Stevens M. (1999), Reasoning about Object Appearance in terms of a Scene
Context. Ph.D. thesis.

[18] Swets D. and Weng J. (1996), Using Discriminant Eigenfeatures for Image
Retrieval. IEEE Trans. PAMI, 18(8):831-836.

[19] Swets D. and Weng J. (1999), Hierarchical Discriminant Analysis for Image
Retrieval, IEEE Trans. PAMI, 21(5):386-401.

[20] Trucco E. and Verri A., Introductory Techniques for 3-D Computer Vision, New
Jersey: Prentice-Hall, Inc., 1998.

[21] Turk M. A. and Pentland P., (1991) Face Recognition Using Eigenfaces, Proc. of
IEEE Conference on Computer Vision and Pattern Recognition, 586-591.

[22] Yambor W., Draper B., and Beveridge J.R., (2000) Analysis of PCA-based Face
Recognition Algorithms: Eigenvector Selection and Distance Measures. Second
Workshop on Empirical Evaluation Methods in Computer Vision.

[23] Zhao W., Krishnaswamy A., Chellappa R., Swets D., and Weng J., (1998)
Discriminant Analysis of Principle Components for face Recognition. 3rd
International Conference on Automatic Face and Gesture Recognition, 336-341.

[24] IFA. Statistical tests, http://fonsg3.let.uva.nl:8001/service/statistics.html. Website,
2000.

