
  
Abstract—Recently, a 3D face recognition approach based on 

geometric invariant signatures, has been proposed. The key idea 
of the algorithm is a representation of the facial surface, invariant 
to isometric deformations, such as those resulting from facial 
expressions. One of the crucial stages in the construction of the 
geometric invariants is the measurement of geodesic distances on 
triangulated surfaces, carried out by fast marching on 
triangulated domains (FMTD). Proposed here is a method, which 
uses only the metric tensor of the surface for geodesic distance 
computation. When combined with photometric stereo used for 
facial surface acquisition, it allows constructing a bending-
invariant representation of the face without reconstructing the 3D 
surface. 
 

Index Terms--face recognition, fast marching, photometric 
stereo, multidimensional scaling.   

I. INTRODUCTION 

ACE recognition is a biometric method that unlike other 
biometrics, is non-intrusive and can be used even without 
the subject’s knowledge. State-of-the-art face recognition 

systems are based on a 40-year heritage of 2D algorithms, 
dating back to the early 1960s [1]. The first face recognition 
methods used the geometry of key points (like the eyes, nose 
and mouth) and their geometric relationships (angles, lengths, 
ratios, etc.). In 1991, Turk and Pentland applied principal 
component analysis (PCA) to face imaging [2]. This has 
become known as the eigenface algorithm and is now a golden 
standard in face recognition. Later, algorithms inspired by 
eigenfaces that use similar ideas were proposed (see [3], [4], 
[5]).  

However, all the 2D (image-based) face recognition 
methods appear sensitive to illumination conditions, head 
orientations, facial expressions and makeup. These limitations 
of 2D methods stem directly from the limited information 
about the face contained in a 2D image. Recently, it became 
evident that the use of 3D data of the face can be of great help 
as 3D information is viewpoint and lighting-condition 
independent, i.e. lacks the “intrinsic” weaknesses of 2D 
approaches.  

Gordon showed that combining frontal and profile views 
can improve recognition accuracy [6]. This idea was extended 
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by Beumier and Acheroy, who compared central and lateral 
profiles from the 3D facial surface, acquired by a structured 
light range camera [7]. This approach demonstrated better 
robustness to head orientations. Another attempt to cope with 
the problem of head pose was presented by Huang et al. using 
3D morphable head models [8]. Mavridis et al. incorporated a 
range map of the face into the classical face recognition 
algorithms based on PCA and hidden Markov models [9]. 
Particularly, this approach showed robustness to large 
variations in color, illumination and use of cosmetics, and also 
allowed separating the face from a cluttered background. 

However, none of the approaches proposed heretofore was 
able to overcome the problems resulting from the non-rigid 
nature of the human face. For example, Beumier and Acheroy 
failed to perform accurate global surface matching, and 
observed that the recognition accuracy decreased when too 
many profiles were used [7]. The difficulty in performing 
accurate surface matching of facial surfaces was one of the 
primary limiting factors of other 3D face recognition 
algorithms as well. 

An attempt to overcome these difficulties has been recently 
proposed in [10], using the bending invariant canonical forms 
[11]. In this approach, the facial surface is converted into a 
representation, which is practically identical for different 
postures of the face. One of the key stages in the construction 
of the bending invariant representation is the computation of 
the geodesic distances between points on a triangulated 
manifold.  

In this work, we present a variation of fast marching on 
triangulated domains (FMTD), capable of computing geodesic 
distances given only the metric tensor of the surface. We 
propose to combine this algorithm with the photometric stereo 
method for facial surface acquisition. Photometric stereo is a 
cheap and simple approach, producing the metric tensor 
without reconstructing the surface. As the result, a simple and 
fast face recognition method is obtained. 

II. SURFACE ACQUISITION 

The face recognition algorithm discussed in this paper treats 
faces as three-dimensional surfaces. It is therefore necessary to 
obtain first the facial surface of the subject that we are trying 
to recognize. Here, we focus on methods, that produce the 
surface gradient. As it will be shown in Section IV, the actual 
surface reconstruction is not needed, saving computational 
effort and reducing numerical errors.  

3D Face Recognition without Facial Surface 
Reconstruction  
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Fig. 1. The photometric stereo acquisition scheme. 

 

A. Photometric stereo 

The photometric stereo technique consists of obtaining 
several pictures of the same subject in different illumination 
conditions and extracting the 3D geometry by assuming a 
Lambertian reflection model. We assume that the facial 
surface, represented as a function, is viewed from a given 
position along the z-axis. The object is illuminated by a source 

of parallel rays directed along il  (Figure 1). 
We assume a Lambertian reflection model, i.e. the observed 

image is given by 

 ( ) ( ) ( ), , ,i iI x y x y n x y lρ= ⋅ , (1) 

where ( ),ρ x y  is the object albedo, and ( ),n x y  is the normal 

to the object surface, expressed as 

 ( ) ( ) ( )( )
( ) 2

2

, , , ,1
,

1 ,

x yz x y z x y
n x y

z x y

− −
=

+ ∇
. (2) 

Using matrix-vector notation, (1) can be rewritten as 

 ( ), LI x y v= , (3) 

where  

 ( )
( )

( )

1 1 1 1
1 2 3

1 2 3

,

L   ;   ,

,N N N N

l l l I x y

I x y

l l l I x y

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (4) 

and 
 

 
( )

1 3 2 3 3 2

2

,
  ;      ;    

1
x y

x y
v z v v z v v

z

ρ
= − = − =

+ ∇
. (5) 

Given at least 3 linearly independent illuminations { }
1

Ni

i
l

=
, and 

the corresponding observations { }
1=

Ni

i
I , one can reconstruct 

the values of ∇z  by pointwise least-squares solution 

 ( )†L ,v I x y= , (6) 

where † T -1 TL (L L) L=  denotes the Moore-Penrose 

pseudoinverse. 

 
 
 
Fig. 2. Structured light acquisition scheme. 

 
When needed, the surface can be reconstructed by solving the 
Poisson equation 
 xx yy xx yyz z z z+ = + , (7) 

with respect to z . In this work, we adopt the photometric 
stereo approach due to its simplicity. 

B. Structured light 

Proesmans et al. [12] and Winkelbach and Wahl [13] 
proposed a shape from 2D edge gradients reconstruction 
technique, which allows to reconstruct the surface normals 
(gradients) from two stripe patterns projected onto the object.  

The reconstruction technique is based on the fact, that 
directions of the projected stripes in the captured 2D images 
depend on the local orientation of the surface in 3D. Classical 
edge-detecting operators, like Sobel, Canny, etc. can be used 
to find the direction of the stripe edges.  

Figure 2 describes the relation between the surface gradient 
and the local stripe direction. A pixel in the image plane 
defines the viewing vector s. The stripe direction determines 
the stripe direction vector v′ , lying in both the image plane and 
in the viewing plane. The real tangential vector of the 
projected stripe 1v  is perpendicular to the normal c v s′= ×  of 

the viewing plane and to the normal p of the stripe projection 
plane. Assuming parallel projection, we obtain 
 1v c p= × . (8) 

Acquiring a second image of the scene with a rotated stripe 
illumination relative to the first one, allows to calculate a 
second tangential vector 2v . Next, the surface normal is 

computed according to 
 1 2n v v= × . (9) 

 In [14], Winkelbach and Wahl propose to use a single 
lighting pattern to estimate the surface normal from the local 
directions and widths of the projected stripes.  

III. BENDING-INVARIANT REPRESENTATION 

Classical surface matching methods, based on finding an 
Euclidean transformation of two surfaces which maximizes 

x 

z 

y 

l i 

n 
LIGHT 

ρ(x,y) 

VIEWER 

PROJECTION 
PLANE 

c 

v' 
s 

p 

v1 

n 
VIEW 
PLANE 

IMAGE  
PLANE 

CAMERA 
LIGHT 

T
ec

hn
io

n 
- 

C
om

pu
te

r 
Sc

ie
nc

e 
D

ep
ar

tm
en

t -
 T

ec
hn

ic
al

 R
ep

or
t  

C
IS

-2
00

3-
05

 -
 2

00
3



3D FACE RECOGNITION WITHOUT FACIAL SURFACE RECONSTRUCTION 
 

3 

some shape similarity criterion (see, for example, [15], [16], 
[17]), are suitable mainly for rigid objects. Human face can by 
no means be considered as a rigid object since it undergoes 
deformations resulting from facial expressions. On the other 
hand, the class of transformations that a facial surface can 
undergo is not arbitrary, and empirical observations show that 
facial expressions can be modeled as isometric (or length-
preserving) transformations. Such transformations do not 
stretch and not do they tear the surface, or more rigorously, 
preserve the surface metric. The surfaces resulting from such 
transformations are called isometric surfaces. The requirement 
from a deformable surface matching algorithm is to find a 
representation, which is the same for all isometric surfaces.  

Schwartz et al. were the first to introduce the use of 
multidimensional scaling (MDS) as a tool for studying curved 
surfaces by planar models [18]. Zigelman et al. [19] and 
Grossman et al. [20] extended some of these ideas to the 
problem of texture mapping and voxel-based cortex flattening. 
A generalization of this approach was introduced in the recent 
work of Elad and Kimmel [11], as a framework for object 
recognition. They showed an efficient algorithm for 
constructing a representation of surfaces, invariant under 
isometric transformations. This method, referred to as 
bending-invariant canonical forms, is the core of our 3D face 
recognition framework.  

Let us be given a polyhedral approximation of the facial 
surface, S. One can think of such an approximation as if 
obtained by sampling the underlying continuous surface on a 
finite set of points pi (i = 1,…,n), and discretizing the metric δ 
associated with the surface 

 ( )i j ijδ p , p = δ . (10) 

Writing the values of δij in matrix form, we obtain the 
matrix of mutual distances between the surface points. For 
convenience, we define the squared mutual distances,   

 ( ) 2
ijij

= δΔ . (11) 

The matrix Δ is invariant under isometric surface 
deformations, but is not a unique representation of isometric 
surfaces, since it depends on arbitrary ordering and the 
selection of the surface points. We would like to obtain a 
geometric invariant, which would be unique for isometric 
surfaces on one hand, and will allow using simple rigid surface 
matching algorithms to compare such invariants on the other. 
Treating the squared mutual distances as a particular case of 
dissimilarities, one can apply a dimensionality-reduction 
technique called multidimensional scaling (MDS) in order to 
embed the surface into a low-dimensional Euclidean space Rm. 
This is equivalent to finding a mapping between two metric 
spaces,  

 ( ) ( ) ( ): S, R ,   ;   m
i id p xϕ δ ϕ→ = , (12) 

that minimizes the embedding error,  

 ( )
2

   ;   ij ij ij i jf d d x xε δ= − = − , (13) 

for some monotone function f that sums over all ij. 
The obtained m-dimensional representation is a set of points 

xi ∈ Rm (i = 1,…,n), corresponding to the surface points pi. 
Different MDS methods can be derived using different 
embedding error criteria [21].  

A particular case is the classical scaling, introduced by 
Young and Householder [22]. The embedding in Rm is 
performed by double-centering the matrix Δ 

 1
2B J J= − Δ  (14) 

(here J = I - 1
n U; I is a n×n identity matrix, and U is a matrix 

consisting entirely of ones). The first m eigenvectors ei, 
corresponding to the m largest eigenvalues of B, are used as 
the embedding coordinates 
    ;   =1,..., ;  =1,...,j j

i ix e i n j m= , (15) 

where j
ix  denotes the j-th coordinate of the vector xi. We refer 

to the set of points xi obtained by the MDS as the bending-
invariant canonical form of the surface; when m=3, it can be 
plotted as a surface. Standard rigid surface matching methods 
can be used in order to compare between two deformable 
surfaces, using their bending-invariant representations instead 
of the surfaces themselves. Since the canonical form is 
computed up to a translation, rotation, and reflection 
transformation, to allow comparison between canonical forms, 
they must be aligned. This can be done, for instance, by setting 
the first-order moments (center of mass) and the mixed 
second-order moments to zero (see [23]). 

IV. MEASURING  GEODESIC DISTANCES  

One of the crucial steps in the construction of the canonical 
form of a given surface, is an efficient algorithm for the 
computation of geodesic distances on surfaces, that is, δij. A 
numerically consistent algorithm for distance computation on 
triangulated domains, henceforth referred to as fast marching 
on triangulated domains (FMTD), was used by Elad and 
Kimmel [11]. FMTD was proposed by Kimmel and Sethian 
[24] as a generalization of the fast marching method [25]. 
Using FMTD, the geodesic distances between a surface vertex 
and the rest of the n surface vertices can be computed in O(n) 
operations. Measuring distances on manifolds was also done 
before for graphs of functions [26] and implicit manifolds 
[27]. 

Since the main focus of this paper is how to avoid the 
surface reconstruction, we present a modified version of 
FMTD, which computes the geodesic distances on a surface, 
using the values of the surface gradient ∇z only. These values 
can be obtained, for example, from photometric stereo or 
structured light.  
The facial surface can be thought of as a parametric manifold, 
represented by a mapping 2 3X : →R R  from the 

parameterization plane ( ) ( )1 2U , ,u u x y= =  to the parametric 

manifold  

 ( ) ( ) ( ) ( )( )1 1 2 2 1 2 3 1 2X U , , , , ,x u u x u u x u u= ; (16) 

which, in turn, can be written as 

 ( ) ( )( )X U , , ,x y z x y= . (17) 
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Fig. 3.  The orthogonal grid on the parameterization plane U is transformed 
into a non-orthogonal one on the manifold X(U). 

 
The derivatives of X with respect to ui are defined as 

Xii u
X ∂

∂
= , and they constitute a non-orthogonal coordinate 

system on the manifold (Figure 3). In the particular case of 
(17),  

 ( ) ( )1 21,0, , 0,1,x yX z X z= = . (18) 

The distance element on the manifold is  

 i j
ijds = g u u , (19) 

where we use Einstein’s summation convention, and the metric 
tensor gij of the manifold is given by 

 ( ) 11 12 1 1 1 2

21 22 2 1 2 2
ij

g g X X X X
g

g g X X X X

⋅ ⋅⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⋅ ⋅⎝ ⎠ ⎝ ⎠

. (20) 

The classical fast marching method [25] calculates distances 
in an orthogonal coordinate system. The numerical stencil for 
the update of a grid point consists of the vertices of a right 
triangle. In our case, 12 0g ≠  and the resulting triangles are not 

necessarily right ones. If a grid point is updated by a stencil 
which is an obtuse triangle, a problem may arise. The values of 
one of the points of the stencil might not be set in time and 
cannot be used. There is a similar problem with fast marching 
on triangulated domains which include obtuse triangles [24].  

Our solution is similar to that of [24]. We perform a 
preprocessing stage for the grid, in which we split every obtuse 
triangle into two acute ones (see Figure 4). The split is 
performed by adding an additional edge, connecting the 
updated grid point with a non-neighboring grid point. The 
distant grid point becomes part of the numerical stencil. The 
need for splitting is determined according to the angle between 
the non-orthogonal axes at the grid point. It is calculated by 

 1 2 12

1 2 11 22

cos
X X g

X X g g
α

⎛ ⎞⋅= =⎜ ⎟⎜ ⎟
⎝ ⎠

. (21) 

If cos 0α = , the axes are perpendicular, and no splitting is 
required. If cos 0α < , the angle α is obtuse and should be 
split. The denominator of (21) is always positive, so we need 
only check the sign of the numerator 12g . In order to split an 

angle, we should connect the updated grid point with another 
point, located m grid points from the point in the X1 direction, 
and n grid points in the X2 direction (m and n can be negative). 

 
Fig. 4 The numerical support for the non-orthogonal coordinate system. 
Triangle 1 gives a proper numerical support, yet triangle 2 is obtuse. It is 
replaced by triangle 3 and triangle 4. 

 
The point is a proper supporting point, if the obtuse angle is 
split into two acute ones. For cos 0α <  this is the case if 

 

( )

( )

1 1 2
1

1 1 2

11 12

2 2
11 11 12 22

cos

0
2

X mX nX

X mX nX

mg ng

g m g mng n g

β
⎛ ⎞⋅ +

= =⎜ ⎟⎜ ⎟+⎝ ⎠
+= >

+ +

 (22) 

and  

 

( )

( )

2 1 2
2

2 1 2

12 22

2 2
22 11 12 22

cos

0.
2

X mX nX

X mX nX

mg ng

g m g mng n g

β
⎛ ⎞⋅ +

= =⎜ ⎟⎜ ⎟+⎝ ⎠
+= >

+ +

 (23) 

Also, here it is enough to check the sign of the numerators. For 
cos 0α > , 2cos β  changes its sign and the constraints are 

 11 12 12 220,    0mg ng mg ng+ > + < . (24) 

This process is done for all grid points. Once the 
preprocessing stage is done, we have a suitable numerical 
stencil for each grid point and we can calculate the distances.  

The numerical scheme used is similar to that of [24], with 
the exception that there is no need to perform the unfolding 
step. The supporting grid points that split the obtuse angles can 
be found more efficiently. The required triangle edge lengths 
and angles are calculated according to the surface metric gij at 
the grid point, which, in turn, is computed using the surface 
gradients xz , yz . A more detailed description appears in [28].  

V. 3D FACE RECOGNITION 

As a first step, the 3D face recognition system acquires the 
surface gradient ∇z, as discussed in Section II. At the second 
stage, the raw data are preprocessed. Preliminary processing, 
such as centering and cropping can be carried out by simple 
pattern matching, which can use the eyes as the most 
recognizable feature of the human face.   
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(0°,0°) (0°,-20°) (0°,+20°) (-25°,0°) (+25°,0°) 
Fig. 5.  Different illuminations of the face. Numbers in brackets indicate the 
azimuth and the elevation angle, respectively, determining the illumination 
direction.  

 
The facial contour should also be extracted in order to limit 

the processing to the surface belonging only to the face itself. 
Preprocessing should emphasize those sections of the face less 
susceptible to alteration and exclude the parts that can be 
easily changed (e.g. hair). In this work, the preprocessing stage 
was limited to cropping the triangulated manifold by removing 
the parts lying outside an ellipse (in the geodesic sense) 
centered at the nose tip.  

Next, an n×n matrix of geodesic distances is created by 
applying FMTD from each of the n selected vertices. Then, 
MDS is applied to the distance matrix, producing a canonical 
form of the face in a low-dimensional Euclidean space (three-
dimensional in all our experiments).  

The canonical form obtained this way is compared with a 
database of templates corresponding to other subjects (one-to-
many match), or to a single stored template (one-to-one 
match). If the correspondence of the compared canonical form 
falls within a certain statistical range of values, the match is 
considered to be valid. 

Finding correspondence between the canonical forms is a 
problem by itself and brings us back to the surface matching 
problem. However, the major difference here is the fact that 
the matching is performed between the rigid canonical forms 
carrying the intrinsic object geometry, rather than the 
deformable facial surfaces themselves. Thus even the simplest 
rigid surface matching algorithms produce plausible results.  

In this work, we adopted the moments [23] due to its 
simplicity. The canonical form’s (p, q, r)-th moment is given 
by 

 ( ) ( ) ( )1 2 3p q r

pqr n n n
n

M x x x=∑  (25) 

where i
nx  denotes the ith coordinate of the nth point in the 

canonical surface samples. In order to compare between two 
canonical forms, the vector ( )

1 1 1
,...,

M M Mp q r p q rM M , termed as the 

moments signature, is computed for each surface. The 
Euclidean distance between two moments signatures measures 
the dissimilarity between the two surfaces. 

VI. EXPERIMENTAL RESULTS 

We performed an experiment, which demonstrates that 
comparison of canonical forms obtained without actual facial 
surface reconstruction is better than reconstruction and direct 
comparison of the surfaces. The Yale Face Database B [29] 
was used. The database consisted of high-resolution grayscale 
images of different instances of 10 subjects of both Caucasian 

   
Fig. 6.  Surface gradient field (left), reconstructed surface (center) and its 
bending-invariant canonical form represented as a surface (right). 

 
and Asian type, taken in controlled illumination conditions 
(Figure 5). Some instances of 7 subjects were taken from the 
database for the experiment. 

Direct surface matching consisted of the retrieval of the 
surface gradient according to (6) using 5 different illumination 
directions, reconstruction of the surface according to (7), 
alignment and computation of the surface moments signature 
according to (25). Canonical forms were computed from the 
surface gradient, aligned and converted into a moment 
signature according to (25).  

In order to get some impression of the algorithms accuracy, 
we converted the relative distances between the subjects 
produced by each algorithm into 3D proximity patterns (Figure 
7). These patterns, representing each subject as a point in R3, 
were obtained by applying MDS to the relative distances (with 
a distortion less than 1%).  

The entire cloud of dots was partitioned into clusters formed 
by instances of the subjects C1―C7. Visually, the more Ci are 
compact and distant from other clusters, the more accurate is 
the algorithm. Quantitatively, we measured (i) the variance σi 
of Ci and (ii) the distance di between the centroid of Ci and the 
centroid of the nearest cluster.  

Table I shows a quantitative comparison of the algorithms. 
Inter-cluster distances di are given in units of the variance σi. 
Clusters C5―C7, consisting of a single instance of the subject 
are not presented in the table. The use of canonical forms 
improved the cluster variance and the inter-cluster distance by 
about one order of magnitude, compared to direct facial 
surface matching. 

 
TABLE I 

FACE RECOGNITION ACCURACY 

CLUSTER σDIRECT d DIRECT σCANONICAL d CANONICAL 

C1 0.1749 0.1704 0.0140 4.3714 

C2 0.2828 0.3745 0.0120 5.1000 

C3 0.0695 0.8676 0.0269 2.3569 

C4 0.0764 0.7814 0.0139 4.5611 

VII. CONCLUSIONS 

We have shown how to perform 3D face recognition 
according to [10], without reconstructing the facial surface.
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Fig. 7.  Visualization of the face recognition results as three-dimensional proximity patterns. Subjects from the face database represented as points obtained by 
applying MDS to the relative distances between subjects. Shown here: straightforward surface matching (A) and canonical forms (B). 
 

3D face recognition based on bending-invariant 
representations, unlike previously proposed solutions, makes 
face recognition robust to facial expressions, head orientations 
and illumination conditions. Our approach shown here allows 
an efficient use of simple 3D acquisition techniques (e.g. 
photometric stereo) for fast and accurate face recognition. 
Experimental results demonstrate superiority of our approach 
over straightforward rigid surface matching. 
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